
2次元輻射流体計算の現状

諏訪　雄大
(東大物理→４月から京都大学基礎物理学研究所)

固武慶氏、滝脇知也氏（国立天文台）、佐藤勝彦氏（自然科学研究機構）、
M. Liebenörfer、 S.C. Whitehouse (Basel大学) という方々との共同研究



新学術領域A03班第２回研究会＠東京大学2010/5/31 /28

Contents

1.超新星の爆発メカニズム

2.シミュレーションの現状

3.議論など

4.まとめ

2



新学術領域A03班第２回研究会＠東京大学2010/5/31 /28

Supernova scenario
初期質量　　　　の星：中心に鉄コア形成

電子捕獲反応、鉄の光分解反応→鉄コア崩壊

核密度を超えると状態方程式が硬くなる→core bounce

コア表面で衝撃波形成、伝搬→外層を吹き飛ばせればい

い(“prompt explosion”)
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Neutrino heating mechanism
neutrino cooling (electron capture) rate:

neutrino heating (neutrino capture) rate:

gain radius: 

heating between gain radius and shock:

shock revival by neutrino heating

　　　　“delayed explosion”
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Currently viable mechanisms
Acoustic mechanism (Burrows+ 06,07)

 SASI turbulence excites fundamental (l=1) g-mode of PNS
g-mode damps by emission of acoustic wave, depositing 

energy
 the energy deposition dominates the neutrino heating 
 conversion more efficient than neutrino heating 
Shock revival by acoustic power 

Acoustic 
wave

Entropy/vortex 
perturbation

g-mode 

νheating

acoustic 
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Currently viable mechanisms
MHD mechanism

Free energy of rotation is converted to magnetic energy; magnetic 
pressure or dissipative heating via magnetorotational instability 
(MRI) can drive explosion!

BUT: Requires a lot of rotation energy → very fast initial rotation

BUT: Requires a lot of rotational energy ====>! very fast initial rotation

coextensive with the magnetically driven jet. Figure 5 clearly
shows the liftoff of the corkscrewing Lagrangian parcels as ro-
tation transitions into spiraling ejection, and then, at larger radii,
into a directed jet. In addition, in model M15B11UP2A1H the ra-
dius of the shock in the equatorial regions is larger. This is because
the equatorial magnetic pressures achieved there at a given time
are larger than in model M15B11DP2A1H. This, in turn, is due to
the fact that in model M15B11UP2A1H the uniform (‘‘U’’) initial
poloidal field results in larger accreted fields at later times than in
model M15B11DP2A1H, for which the late-time accretion is of
matter from the outer corewhere the initial field decays in the 1/r 3

dipolar manner (x 3). In fact, for model M15B11UP2A1H the
equatorial regions join the explosion at later times. This outcome
is expected eventually for all models, but due to the different mag-
netic field structures andmagnitudes for themodels listed inTable 1,
the times to equatorial explosion will vary greatly from model
to model.

The particle trajectories implied by Figure 5 andmagnetic flux
freezing indicate that the ejected material stretches toroidal field
into poloidal field, in a reverse of what happens during rotational
winding in the inner!20Y150 km. So, in the jet column at large
radii the field has a significant poloidal component.

Figure 6 shows radial slices along the poles (solid lines) and
along the equator (dashed lines) of both the poloidal (red ) and
toroidal (black) fields for models M15B11DP2A1H (left panel )
and M15B11UP2A1H (right panel ) at 635 and 585 ms, respec-
tively, after bounce. Since there is no appreciable rotational shear

interior to !10 km, the magnetic fields there have little dynam-
ical effect. It is the fields in the region between!10 and!150 km
that are of consequence, since it is here that the magnetic tower
is launched and maintained. Figure 6 and x 2.3 indicate that the
fields achieved in this region in these models are comparable to
what is expected at saturation for a P0 of 2 s (!1015 G). This jus-
tifies our focus on thesemodels when assumingP0 ¼ 2 s, despite
the fact that we underresolve the MRI.
Figure 7 depicts color maps of the poloidal (left panel ) and to-

roidal (right panel ) field distributions in model M15B11UP2A1H,
585 ms after bounce. In both panels, the lines are isopoloidal field
lines and the inner 200 km on a side is shown. The relative extents
of the red and yellow regions demonstrate the dominance of the
toroidal component in the inner zones at these late times well into
the explosion, but the presence of a column of yellow/red (high
field) along the axis in the poloidal plot attests to the conversion
due to stretching by ejected matter of toroidal into poloidal field
(see also Fig. 5). Figure 7 also demonstrates the columnar struc-
ture of this inner region due to both equatorial accretion (and,
hence, pinching) and rotation about the (vertical) axis. However,
it should be made clear that the actual field distributions after sat-
uration are likely to be different, and what they are in detail when
the MRI is fully enabled remains to be determined.
Figure 8 compares maps of the gas pressures (Pgas; left pan-

els) with the magnetic pressures (Pmag; right panels) for models
M15B11DP2A1H (top panels) and M15B11UP2A1H (bot-
tom panels), at various times after their respective explosions

Fig. 4.—Left: Magnetic field lines for model M15B11UP2A1H at 264.5 ms after bounce. The size of the displayed region is 3000 ; 4000 km2. ‘‘Footpoints’’ for the
field lines are randomly distributed in the inner 500Y1000 km, with a denser distribution along the polar axis to probe the region of larger magnetic energy where the
explosion takes place in our simulations. Hence, the crowding offield lines does not correspond directly and accurately to regions of larger magnetic fields.Right: Same as
the left panel, but for model M15B10DP2A1H at 855.5 ms after bounce and on a scale of 6000 km ; 8000 km. Notice how much more tightly the B field is wound.

BURROWS ET AL.424

1366 TAKIWAKI, KOTAKE, & SATO Vol. 691

Figure 4. Three-dimensional plots of entropy with the magnetic field lines (left) and the streamlines of the matter (right) during the jet propagation for models
of B12TW1.0 (top) and B10TW1.0 (bottom), at 20 ms and 94 ms after bounce, respectively. The outer edge of the sphere colored by blue represents the radius of
7.5 × 107 cm. Note that the models of the top and bottom panels belong to the prompt and delayed MHD exploding models, respectively. These panels highlight not
only the wound-up magnetic field around the rotational axis (left), but also the fallback of the matter from the head of the jet downward to the equator, making a
cocoon-like structure behind the jet (right).
(A color version of this figure is available in the online journal.)

for the shock-revival is estimated as follows. The matter behind
the stalled-shock is pushed inward by the ram pressure of the
accreting matter. This ram pressure is estimated as

P = 4 × 1028
(

ρ

1010 g cm−3

) (
∆v

2 × 109 cm s−1

)2

erg cm−3,

(11)
where the typical density and the radial velocity are taken from
Figure 1 and the bottom right panel of Figure 5, respectively.
When the toroidal magnetic fields are amplified as large as ∼
1015 G due to the field wrapping behind the shock, the resulting
magnetic pressure, B2

8π
, can overwhelm the ram pressure, leading

to the magnetic shock-revival. The origin of the similarity of the
jets seen in Figure 3 comes from this mechanism. We find
that this process works in all the computed models. It is noted
that the importance of the magnetic-shock revival was noticed
also in the analytic models by Uzdensky & MacFadyen (2007a,

2007b). In addition to their expectations, our simulations show
that the explosion energy becomes smaller than their estima-
tions because the magnetic tower cannot be wider as they
assumed.

From the bottom panels of Figure 8, it can be seen that the
poloidal fields behind the shock front do not depend on the
initial rotation rate so much given the same initial field strength,
while the difference of the poloidal magnetic fields behind the
shock in the bottom panels of Figure 7 simply comes from the
difference in the initial field strength. This feature is observed
in both the prompt and delayed models.

4.4. Dependence of Jet Arrival Times and Explosion Energies
on Initial Rotation Rates and Magnetic Field Strengths

In the previous section, we discussed the similarities among
the computed models. From this section, we move on to discuss
the differences among them.

伝播とともに

球状からピー

気遠心力加速

vr(!104 km s-1)

x
yz

1380 kmBurrows+ 07 Mikami+ 08
Takiwaki+ 09

6



新学術領域A03班第２回研究会＠東京大学2010/5/31 /28

Summary of explosion mechanisim

Neutrino-heating mechanism
“standard” scenario

only one group (@MPA) obtains explosion

Acoustic mechanism
Impedance mismatch between g-mode and SASI

takes longs time (~ 1sec) to be induced

only one group (@Arizona) obtains explosion

MHD mechanism
explodes only polar direction

➡  the other mechanism is required for whole regime
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Neutrino transfer
Boltzmann equation for neutrinos

球対称仮定を用いても、f=f(t,r,μ,E)は４次元積分が必要　　　
（現状、１Dでしか厳密に解くことはできない）

２次元流体を背景にして解くには何らかの近似が必要

1176 LIEBENDÖRFER, WHITEHOUSE, & FISCHER Vol. 698

by a geometric estimate of the flux factor as suggested and
evaluated by Bruenn in Liebendörfer et al. (2004).

In Section 2, we describe in detail how these concepts enter
the framework of the IDSA, which we design for the transport of
massless fermions through a compressible gas. Its connection
to the well known diffusion limit is made in Appendix A. In
Section 3, we evaluate the performance of this approximation
in comparison with Boltzmann neutrino transport in spherical
symmetry. Finally, in Section 4, we discuss the extension to
multidimensional simulations. Details of the finite differencing
and implementation are given in Appendix B.

2. THE ISOTROPIC DIFFUSION SOURCE
APPROXIMATION (IDSA)

In the IDSA, the separation into hydrodynamics and radiative
transfer is not based on particle species, but on the local opacity.
One particle species is allowed to have a component that evolves
in the hydrodynamic limit, while another component of the same
particle species is treated by radiative transfer. The restriction
of a chosen radiative transfer algorithm to the more transparent
regimes enables the use of more efficient techniques that would
not be stable in the full domain. In opaque regimes, on the
other hand, one can take advantage of equilibrium conditions to
reduce the number of primitive variables that need to be evolved.
This algorithmic flexibility can drastically decrease the overall
computational cost with respect to a traditional approach.

In the IDSA, we decompose the distribution function of one
particle species, f, into an isotropic distribution function of
trapped particles, f t, and a distribution function of streaming
particles, f s. In terms of a linear operator D() describing
particle propagation, the transport equation is written as D(f =
f t + f s) = C, where C = C t + Cs is a suitable decomposition
of the collision integral according to the coupling to the trapped
(C t) or streaming (Cs) particle components. The ansatz

D(f t) = C t − Σ, (1)

D(f s) = Cs + Σ (2)

requires that we specify an additional source term Σ, which
converts trapped particles into streaming particles and vice
versa. We determine it approximately from the requirement that
the temporal change of f t in Equation (1) has to reproduce the
diffusion limit in the limit of small mean free paths. Hence, we
call Σ the “diffusion source.” In regions of large mean free paths,
we limit the diffusion source by the local particle emissivity.
Once Σ is determined by the solution of Equation (1) for the
trapped particle component, we calculate the streaming particle
flux according to Equation (2) by integrating its source, Cs + Σ,
over space. Finally, the streaming particle distribution function
f s is determined from the quotient of the net particle flux and a
geometric estimate of the flux factor. The diffusion source will
turn out to have an additional weak dependence on f s. Thus,
iterations or information from past time steps will be used in the
above sequence to reach a consistent solution.

2.1. Application to Radiative Transfer of Massless Particles

As our target application is neutrino transport in core-collapse
supernovae, we develop and test the IDSA using the example
of the O(v/c) Boltzmann equation in spherical symmetry

(Lindquist 1966; Castor 1972; Mezzacappa & Bruenn 1993),

df

cdt
+ µ

∂f

∂r
+

[
µ

(
d ln ρ

cdt
+

3v

cr

)
+

1
r

] (
1 − µ2) ∂f

∂µ

+
[
µ2

(
d ln ρ

cdt
+

3v

cr

)
− v

cr

]
E

∂f

∂E

= j (1 − f ) − χf +
E2

c (hc)3

×
[

(1 − f )
∫

Rf ′dµ′ − f

∫
R

(
1 − f ′) dµ′

]
. (3)

This transport equation describes the propagation of massless
fermions at the speed of light, c, with respect to a compressible
background matter having a rest mass density ρ. The particle
distribution function f (t, r, µ,E) depends on the time, t, radius,
r, and the momentum phase space spanned by the angle cosine,
µ, of the particle propagation direction with respect to the radius
and the particle energy, E. The momentum phase space variables
are measured in the frame comoving with the background mat-
ter, which moves with velocity v with respect to the laboratory
frame. We denote the Lagrangian time derivative in the comov-
ing frame by df/dt . Note that the derivatives ∂f/∂µ and ∂f/∂E
in Equation (3) are also understood to be taken comoving with
a fluid element. The particle density is given by an integration
of the distribution function over the momentum phase space,
n(t, r) = 4π/ (hc)3 ∫

f (t, r, µ,E) E2dEdµ, where h denotes
Plancks constant. On the right-hand side, we include a particle
emissivity, j, and a particle absorptivity, χ , as well as an isoen-
ergetic scattering kernel, R. We write out all blocking factors
(1−f ) in Equation (3) to ease the identification of in-scattering
and out-scattering terms. The shorthand notation f ′ refers to
f (t, r, µ′, E), where µ′ is the angle cosine over which the inte-
gration is performed. For the present state of our approximation,
we neglect inelastic scattering.

2.2. Trapped Particles

We separate the particles described by the distribution func-
tion f = f t + f s in Equation (3) into a “trapped particle” com-
ponent, described by a distribution function f t, and a “streaming
particle” component, described by a distribution function f s. We
assume that the two components evolve separately according to
Equation (3), coupled only by an as yet unspecified source func-
tion Σ which converts trapped particles into streaming ones and
vice versa. In this subsection, we discuss the evolution equation
of the trapped particle component,

df t

cdt
+ µ

∂f t

∂r
+

[
µ

(
d ln ρ

cdt
+

3v

cr

)
+

1
r

] (
1 − µ2) ∂f t

∂µ

+
[
µ2

(
d ln ρ

cdt
+

3v

cr

)
− v

cr

]
E

∂f t

∂E

= j − (j + χ ) f t − Σ

+
E2

c (hc)3

[∫
Rf t′dµ′ − f t

∫
Rdµ′

]
. (4)

We assume that the distribution of the trapped particle
component, f t = f t(t, r, E), and the source function, Σ, is
isotropic. The angular integration of Equation (4) then reduces
to

df t

cdt
+

1
3

d ln ρ

cdt
E

∂f t

∂E
= j − (j + χ ) f t − Σ. (5)

(Lindquist 1966; Castor 1972; Mezzacappa & Bruenn 1993)
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Current status of 1D
Rammp & Janka 00

Sumiyoshi+ 05Thompson+ 03

Liebendoerfer+ 01

state-of-the-art simulations do not obtain explosion!
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multi-D effects
τheat: ニュートリノ加熱の時間スケール
τadv: 移流の時間スケール

τadv ∼
rshock − rgain

vr
∼ 50 ms

� r

100 km

� �
vr

2× 108 cm s−1

�−1

τheat ∼
GMcoremu

q+
ν r

∼ 80 ms
�

Mcore

1.5M⊙

� �
Lν

1053erg s−1

�−1
� �

ε2
�

(15MeV)2

�−1 � r

200km

�−1

shock

gain radius

PNS

ν

τheat

τadv
爆発に必要な条件

τheat < τadv

2次元以上で起こること

✓対流
✓停在衝撃波不安定性 (SASI)

どちらもτadvを伸ばすように働く

Q−ν < Q+
ν

Q−ν > Q+
ν
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SASI
Standing Accretion Shock Instablity

Non-radial, non-local low-mode (l=1,2) instability of flow 
behind standing accretion shock 

PNS Shock surfacegain radius

Acoustic wave

Bolondon+ 2003, 2006
11
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SASI develops and deforms the accretion
➡  The convection grows and leads larger neutrino-

heating efficiency
➡  Explosion!

SASI-aided SN explosion

672 MAREK & JANKA Vol. 694
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Physical time: t=454 ms
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Physical time: t=524 ms
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 Physical time: t=610 ms
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Physical time: t=650 ms
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Physical time: t=700 ms
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Figure 4. Six snapshots from the post-bounce evolution of Model M15LS-rot. The color coding represents the entropy of the stellar gas. The shock is visible as
deformed sharp discontinuity between low-entropy, infalling matter in the upstream region and high-entropy, boiling matter behind the shock; its position is highlighted
by a bold, solid white contour. The top left plot shows the entropy distribution at t = 119 ms after bounce, about 40 ms after the postshock convection has reached the
nonlinear regime and the shock develops first small nonsphericities. The top right and middle left plots (t = 454 ms and 524 ms after bounce, respectively) demonstrate
the presence of very strong bipolar oscillations due to the SASI, the middle right plot (t = 610 ms p.b.) displays the beginning of a rapid outward expansion, and the
lower two plots (for t = 650 ms and 700 ms post bounce) show the onset of the explosion with a largely aspherical shock that possesses a dominant l = 1 deformation
mode. Note that the radial scale was adjusted in the last three snapshots and that the contracting nascent neutron star exhibits a growing prolate deformation because
of the rotation considered in this simulation. The thin, solid white line in each panel marks the direction-dependent location of the gain radius, and the thin dotted,
dashed, and dash-dotted white lines indicate the inner boundaries of the regions where iron-group elements, silicon, or oxygen, respectively, dominate the composition
(the contours are defined by mass fractions of 30% iron-group elements, 30% silicon, and 10% oxygen, respectively). In some of the panels not all these composition
interfaces are located within the plotted area, and the iron-dissociation line or the iron-silicon interface can (at least partly) overlap with the shock contour. We point
out that the rotation of the model is so slow that the composition interfaces in the preshock region exhibit no visible centrifugal deformation.

lowest modes turns out to reflect rather sensitively the dynamical
activity in the accretion layer. One should note that during
phases of relative quiescence of the dipole mode the quadrupole
mode is dominant and vice versa. A high level of activity is
reached shortly after convection has become strong and the SASI
deformation of the shock has set in (t ! 100 ms after bounce).
The following slight reduction of the power is a consequence
of the shock retraction between 100 and 150 ms post bounce.
When the jump in the entropy, density, and mass accretion rate

associated with the composition interface between the Si layer
and the oxygen-enriched Si shell of the progenitor reaches the
shock at ∼170 ms after bounce, transient shock inflation is
triggered (see Figures 1, 2, 3, and 6). As a consequence, the
SASI power increases again before it decays once more during
another period of shock contraction. At t ! 400 ms a phase
of basically continuous, slow expansion of the average shock
radius begins and the low-mode power grows. After 500 ms
until the end of our simulation at ∼700 ms, the low SASI modes
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Figure 12. Four snapshots from the evolution of our 11.2 M! explosion model at times t = 230 ms, 250 ms, 275 ms, and 303 ms after core bounce. The figures contain
the same features as shown in Figure 4.
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Figure 13. Mass (top left), neutrino-heating rate (top right), heating efficiency (bottom left), and heating and advection timescales (bottom right) in the gain layer as
functions of time for our 11.2 M! explosion model.
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Figure 10. Same as Figure 2 but for our two-dimensional explosion simulation of an 11.2 M! progenitor star. Note that the mass-shell spacing outside of the red
dashed line at an enclosed mass of 1.25 M! (marking the composition interface between the silicon layer and the oxygen-enriched Si shell) is reduced to steps of
0.0125 M! instead of 0.025 M!.

plane later than in the polar directions (see the panels for
t = 250 ms and 275 ms after bounce in Figure 12). Therefore
a wedgelike region around the equator remains for some time,
where silicon and sulfur are still present with higher abundances
between the shock and the oxygen layer, while the matter swept
up by the shock consists mostly of iron-group nuclei and α-
particles. The mass-shell plot of Figure 10, which is constructed
from the laterally averaged two-dimensional data at each radius,
is misleading by the fact that this preshock material appears to be
located behind the angle-averaged shock radius (at post-bounce
times 270 ms ! t ! 300 ms). We note that the penetration into
the oxygen-rich infalling shells, beginning at t ∼ 250 ms p.b.,
does not have any obvious supportive or strengthening effect on
the outgoing shock.

In Figure 13, we provide information about the conditions
and neutrino energy deposition in the gain layer of the 11.2 M!
model. As in the 15 M! case, the mass in the gain layer increases
when the shock begins its outward expansion. At the same
time, the infall (advection) timescale of matter between the
shock and the gain radius increases, but continues to be well
defined. Again, as in the 15 M! explosion model, this suggests
the presence of ongoing accretion of gas through the gain layer to
the neutron star (which can also be concluded from the continued
contraction of mass shells in this region in Figure 10). Shortly
after the (net) neutrino-heating rate has reached a pronounced
peak of about 7.5 × 1051 erg s−1 at t ≈ 70 ms, it makes
a rapid drop to around 3 × 1051 erg s−1. This decline is a
consequence of the decay of the neutrino luminosities at the
time when the mass infall rate onto the shock and the neutron
star decreases. The decrease occurs when the steep negative
density gradient (and positive entropy step) near the composition
interface between the silicon layer and the oxygen-enriched Si
layer of the progenitor star (near 1.3 M!) arrives at the shock (at
t ≈ 100 ms after bounce). Nevertheless, the heating timescale
shrinks essentially monotonically, which points to an evolution
of the matter in the gain layer toward an unbound state, i.e.,
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Figure 11. Left panel: mean shock radius (arithmetical average over all
lateral directions, dashed line) and maximum and minimum shock positions
as functions of post-bounce time for our two-dimensional explosion simulation
of an 11.2 M! progenitor. Right panel: “explosion energy” of the 11.2 M! star,
defined as the total energy (internal plus kinetic plus gravitational) of all mass
in the gain layer with positive radial velocity, as a function of post-bounce time.

the absolute value of the total gas energy in the numerator of
Equation (5) goes to zero.

3.4. Explosion Energy

In both our 11.2 M! and 15 M! explosions, the energy of
the matter in the gain layer with positive radial velocities
(“explosion energy”) reaches ∼2.5 × 1049 erg at the end of
the computed evolutions and rises with a very steep gradient
(Figures 9 and 11). Therefore, reliable estimates of the final
explosion energy cannot be given at this time. For that to be
possible, the simulations would have to be continued for many
hundred milliseconds more (which is numerically a challenging
task and currently impossible for us with the sophisticated
and computationally expensive neutrino transport and chosen
resolution). This is obvious from the neutrino-driven explosion
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Figure 2. Time evolution of Model M15LS-rot visualized by the mass-shell trajectories. In this two-dimensional simulation with rotation, the mass-shell lines mark
the radii of spheres that contain certain values of the rest mass (the plot is based on an evaluation of the mass-weighted lateral average of the two-dimensional data
set). They are spaced in steps of 0.025 M! with bold lines every 0.1 M!. The thick solid line starting at t = 0 denotes the mass-averaged shock position, the blue
lines represent the mean neutrinospheres of νe (solid), ν̄e (dashed), and heavy-lepton neutrinos (dash-dotted), the black dashed curve shows the mean gain radius, and
the location of the composition interface between the silicon shell and the oxygen-enriched Si layer of the progenitor star at 1.42 M! is highlighted by a red dashed
line. Different shadings indicate regions with different chemical composition. Dark gray marks the layer where the mass fraction of oxygen is larger than 10% (which
corresponds to the inner boundary of the layers that contain significant amounts of oxygen), medium gray the region where the mass fraction of heavy nuclei with
mass numbers A ! 56 exceeds 70%, the yellow band in between is the layer where both abundance constraints are not fulfilled (in this region silicon and sulfur are
abundant), light gray indicates those regions where more than 30% of the mass is in α-particles, and the white areas enclosed by the shock front contain mostly free
nucleons and only a small mass fraction (less than 30%) of α-particles. At times t " 600 ms post bounce, slightly darker gray patches in the light-gray postshock
regions contain a mass fraction of more than 60% helium nuclei. This signals that the nucleon recombination becomes more complete and/or that the dissociation of
alpha particles to free nucleons is less complete in the matter expanding behind the outgoing shock because of low postshock temperatures when the shock reaches
larger radii. Note that compressional heating triggers nuclear burning (described in our simulations by a “flashing treatment,” see Section 2.1) and leads to changes of
the chemical composition in the infalling stellar layers.

at the neutrinosphere, and Ṁ (less than 0) the rate of mass
accretion by the shock. In the case of the HW-EoS, the
stagnation radius of the shock is therefore significantly larger
during the phase of shock retraction (t ! 80–100 ms after
bounce).

In contrast, the luminosities Lν and mean energies 〈εν〉 of
the neutrinos radiated during shock accretion are appreciably
higher in the case of the LS-EoS, because the larger neutri-
nospheric temperature of the more compact neutron star over-
compensates for the smaller radius (roughly, the νe emission
behaves like blackbody radiation and thus Lν ∝ R2

nsT
4

ns and
〈εν〉 ∝ Tns). Interestingly, the prompt νe burst during shock
breakout reveals the opposite dependence on the nuclear EoS:
it is more luminous in the case of the HW-EoS because of a
stronger deleptonization in a wider spatial region, which is fa-
cilitated by a less steep increase of the optical depth in the
deleptonization region and thus an easier escape of the electron
neutrinos.

We also point out that in the simulations with both EoSs the
average energy of the radiated ν̄e gets very close to that of the
emitted muon and tau neutrinos or becomes even slightly higher
after about 200 ms of post-bounce accretion (Figure 1, bottom
right). This effect is visible in the mean spectral energies, which
are defined as the ratio of the energy density to the number
density of neutrinos, 〈εν〉 =

∫ ∞
0 dε Jν(ε)/

∫ ∞
0 dε ε−1Jν(ε), with

Jν(ε) being the zeroth energy moment of the specific intensity.2
In contrast, the rms energies of the energy spectrum, 〈εν〉rms ≡[∫ ∞

0 dε ε2Jν(ε)/
∫ ∞

0 dε Jν(ε)
]1/2

, still follow the standard order
sequence, 〈ενe

〉rms < 〈εν̄e
〉rms < 〈ενx

〉rms, although the difference
between the last two is considerably smaller than in older
simulations, in which the transport treatment of heavy-lepton
neutrinos νx did not take into account the energy exchange
through neutrino–nucleon scatterings and the production of
νx ν̄x pairs by nucleon–nucleon bremsstrahlung and by the
annihilation of νeν̄e pairs (for more details, see Buras et al.
2003a; Raffelt 2001; Keil et al. 2003). We will come back to
a closer discussion of these interesting spectral properties in
Section 3.6.

3.2. Two-Dimensional 15 M! Model with Explosion

In contrast to the spherically symmetric simulations, the
two-dimensional Model M15LS-rot turns out to approach an
explosive runaway situation after more than 500 ms of post-
bounce accretion (Figures 2 and 3). Some snapshots of the
entropy distribution in the central region (with radii between
∼400 km and ∼800 km) for characteristic stages of the evolution
are displayed in Figure 4.

2 At sufficiently large radii, where neutrinos in the bulk of the spectrum
propagate nearly radially (i.e., the flux factor in the laboratory frame is near
unity, which is well fulfilled at the chosen radius of evaluation at 400 km), the
local energy and number densities are essentially identical with the energy and
number flux densities.
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divide the distribution function into two parts:           
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Figure 1. Schematic representation of a fluid element in the diffusion source
approximation. It contains matter (lower part) and trapped radiation particles
(upper part). The interaction with other fluid elements can exclusively occur
by the exchange of streaming particles or the combined hydrodynamics of the
matter and trapped particles. Hence, streaming particles can be absorbed in
matter at the rate (j + χ )f s and trapped particles are converted to streaming
particles at the rate Σ. Within the fluid element, matter emits trapped particles at
the rate j and absorbs trapped particles at the rate (j + χ )f t. The emissivity in
the absorption term originates from the identity j (1 −f ) −χf = j − (j + χ )f ,
which hides the Pauli blocking factor in the absorption term.

However, even if we are now steering toward the hydrodynamic
limit, the evolution of the trapped particle distribution function
in our approximation should at least reproduce the correct
diffusion limit. The physical understanding of diffusion relies
on fast-moving particles with a very short transport mean free
path (see the derivation of the diffusion limit, Equation (A10), in
Appendix A). The divergence of the small net particle flux leads
to a slow drain (or replenishment) of particles in a fluid element.
In order to accommodate this diffusive drain (or replenishment)
of trapped particles in Equation (5), we have to implement it
through the so far unspecified source term Σ. In the framework of
our approximation, trapped particles are converted to streaming
ones (or vice versa) at the same rate diffusion would drain
(or replenish) particles in the fluid element. A comparison
of Equation (5) with Equation (A10) suggests the following
diffusion source:

Σ = 1
r2

∂

∂r

( −r2

3 (j + χ + φ)
∂f t

∂r

)
+ (j + χ )

1
2

∫
f sdµ. (6)

Isoenergetic scattering enters Equation (5) only via its opacity
φ in the expression for the transport mean free path λ =
1/(j + χ + φ) that determines the flux in Equation (6) (see
Appendix A). The additional term (j + χ )/2

∫
f sdµ accounts

for the absorption of streaming particles in matter. Its necessity
is best understood with the help of Figure 1.

Shown are the different particle fluxes that relate to one fluid
element. The fluid element contains both matter and trapped
particles. They interact by the emissivity j and absorption
(j + χ )f t (vertical arrows). The radiation particles leaving the
fluid element will convert into streaming particles at the rate Σ
(upper horizontal arrow). We do not include the possibility of a
direct emission of matter into the streaming particle component
because this process is more easily accounted for by a high
conversion rate Σ of trapped particles. On the other hand, we
account for streaming particles that are absorbed by matter as
represented by the arrow denoted by (j + χ )f s in Figure 1. In
the diffusion limit, the net particle exchange of the fluid element
with its environment, Σ − (j + χ )/2

∫
f sdµ, must correspond

to the diffusion term in Equation (A10). This is the case for our
choice of Σ in Equation (6).

If the above scheme is applied in a more transparent regime
where the diffusion approximation does not hold, the diffusion
source in Equation (6) may become arbitrarily large. This
would be inconsistent with the particle fluxes drawn in Figure 1
because over a long time the diffusion source cannot exceed the
emissivity of trapped particles without creating an unphysical
deficit in trapped particles. Instead, we would like the trapped
particle component to drop to zero and stay zero in the limit of
long mean free paths. This is achieved if we limit the diffusion
source in Equation (6) to Σ ! j . If the diffusion source and
emissivity reach equality, the matter absorptivity −(j + χ )f t

removes remaining trapped particles while all newly emitted
ones are directly converted to streaming particles that escape
the fluid element. With this limit imposed, the net interaction of
particles with matter in Figure 1 has the correct limit for large
mean free paths, j − (j + χ )f s.

The search for a lower bound to the diffusion source is less
straightforward. In principle, a negative Σ cannot be physically
excluded. It corresponds to streaming particles that become
trapped in a region of large opacity and low absorptivity. A limit
corresponding to the restriction f t ! 1 would suggest Σ " −χ .
However, f t = 1 can be an excessively large particle density
compared to the physically expected value. Much more stable
and more accurate results were obtained by the requirement that
f t ! j/(j + χ ), where j/(j + χ ) represents the equilibrium
distribution function. If one considers this condition for the
particle fluxes in Figure 1, this leads to the simple requirement
Σ " 0. Hence, the net absorption of particles in a fluid element
cannot exceed (j + χ )f s. The diffusion source from Equation
(6) then becomes

Σ = min
{

max
[
α + (j + χ )

1
2

∫
f sdµ, 0

]
, j

}

α = 1
r2

∂

∂r

( −r2

3 (j + χ + φ)
∂f t

∂r

)
. (7)

Assuming that the streaming particle density 1/2
∫

f sdµ was
known from the considerations described in the following
subsection, Equation (5) can be used to calculate the evolution
of the trapped particle component consistently with the diffusion
source specified in Equation (7).

2.3. Streaming Particles

The evolution equation for the streaming particle component
consists of all terms in Equation (3) that have not been consid-
ered in the evolution Equation (4) for the trapped particles. As
mentioned above, we neglect direct scattering from the trapped
component into the streaming component and vice versa. That
is

df s

cdt
+ µ

∂f s

∂r
+

[
µ

(
d ln ρ

cdt
+

3v

cr

)
+

1
r

] (
1 − µ2) ∂f s

∂µ

+
[
µ2

(
d ln ρ

cdt
+

3v

cr

)
− v

cr

]
E

∂f s

∂E
= − (j + χ ) f s

+ Σ +
E2

c (hc)3

[∫
Rf s′

dµ′ − f s
∫

Rdµ′
]

. (8)

For the evolution of streaming particles, we neglect the scatter-
ing integrals on the right-hand side of Equation (8), because the
streaming particle density is designed to be small compared to
the trapped particle density in regions where the scattering rate
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Figure 6. Comparison of the heating or cooling rates specific to each neutrino
type at 150 ms after bounce. The solid lines show the energy exchange between
neutrinos and matter. The dashed lines show the energy exchange between
antineutrinos and matter. The lines labeled “Approx.” and “Spectral” have been
calculated using the IDSA with the standard and spectral representations of the
trapped particle component, respectively.
(A color version of this figure is available in the online journal.)

the reference simulation (solid line) than the standard IDSA
with the two-parameter description of the trapped particle dis-
tribution function (dashed line). Panel (b) shows the neutrino
luminosities measured in the comoving frame (this distinc-
tion is only made for the Boltzmann reference results) at
500 km radius. Overall, the luminosities are in good agree-
ment. The neutrino luminosities in the approximate models
are somewhat smaller than in the more accurate Boltzmann
model.

While experimenting with different variations in the approx-
imation scheme, we found that the stationary-state luminosity
in the approximate model is not a perfectly smooth function
of time, which leads us to the discussion of some numerical
issues related to the isotropic diffusion source approach. The
numerical details of our current implementation are outlined
in Appendix B. All local reaction rates and the correspond-
ing updates of the lepton fractions and temperature are imple-
mented in a time-implicit way. The nonlocal contribution from
the diffusion is also unconditionally stable because the updates
are ordered in such a way that each zone can use the updated
distribution function of its neighbor zone in the upwind direc-
tion (with respect to the diffusion flux), while the contribution
of the local distribution function to the diffusion term is in-
cluded in the time-implicit update. However, the coupling to
the stationary-state solution of the streaming particle compo-
nent is operator split. It is therefore still necessary to restrict the
time step to obtain a numerically stable evolution. In the dif-
fusion limit, the operator splitting is numerically stable due to
above-mentioned implicit finite differencing. In the free stream-
ing limit, the operator splitting is numerically stable due to the
absence of relevant interactions between the streaming particle
component and matter. It is again the semitransparent transition
regime where the operator splitting has the highest potential
for numerical instabilities. We obtain converged solutions if the
time step chosen is smaller than 1 km/c. This corresponds to
the Courant–Friedrich–Levy (CFL) limit for the speed of light
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Figure 7. Density, entropy, electron fraction, and velocity as functions of
enclosed mass for a model based on Boltzmann neutrino transport (solid lines)
and two models based on the IDSA. The dashed lines represent data from the
IDSA using a thermal trapped particle distribution function while the dash-
dotted lines represent data from the IDSA with a spectral trapped particle
treatment. The comparison is shown at two different time instances: at 1 ms after
bounce (lines with the shock discontinuity positioned between 0.8 and 1 M!)
and at 3 ms after bounce (lines with the shock discontinuity positioned between
1 and 1.2 M!). Significant differences are only visible in the electron fraction
profiles: the deleptonization in the approximate model is slightly delayed.
(A color version of this figure is available in the online journal.)

or the time step limit of an explicitly finite-differenced diffu-
sion scheme where the mean free path is half the zone width,
i.e., in the semitransparent regime. If the time step chosen is
larger, the stationary-state solution for the streaming particle
component starts to jump from time step to time step. Rare
luminosity jumps are still visible in Figure 10(b). All other vari-
ables, e.g., the lepton fractions and the temperature, do not react
to these instantaneous luminosity jumps because they evolve on
a slower timescale where the luminosity oscillations enter in a
time-averaged manner.

In summary, we believe that the separation of particles
into trapped and streaming components provides an interesting
ansatz for specifically tailored simplifications of the Boltzmann
transport equations. The results in Figures 7–10 show that
such a simplified description can reproduce the key features of
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Figure 8. Same presentation of the data as in Figure 7. Here, the comparison is
shown at two later time instances: at 30 ms after bounce (lines with the shock
discontinuity positioned at 150 km radius) and at 100 ms after bounce (lines with
the shock discontinuity positioned at 250 km radius). The two IDSA solutions
lead to a somewhat more optimistic shock expansion in this phase, but produce
nicely detailed features in the electron fraction and entropy profiles.
(A color version of this figure is available in the online journal.)

neutrino transport in supernova models. In the diffusion limit,
the results are stable and accurate. In the transition regime, the
time step of our current implementation is at present limited by
numerical fluctuations of the stationary-state streaming particle
flux at the transition to transparent conditions. With our not
thoroughly optimized code, a single time step with the IDSA is
of order 100 times faster than a corresponding time step with
Boltzmann neutrino transport. As the fully implicit Boltzmann
transport can take about 10 times larger time steps, a full
simulation with the IDSA is about an order of magnitude
faster than the one with Boltzmann transport. However, this
number may vary from application to application because the
performance of the time-implicit Boltzmann solution does not
scale favorably with an increased dimensionality and size of
the computational domain. In three dimensions, we believe that
simulations based on the IDSA are feasible on average size
high-performance computer clusters, while simulations with
comprehensive Boltzmann transport have not yet been reported
to be feasible even on top-performing computer systems. A
possible extension of the IDSA to multidimensional applications
is outlined in the following section.
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Figure 9. Same presentation of the data as in Figure 7. Here, the comparison is
shown at two later time instances: at 150 ms after bounce (lines with the shock
discontinuity positioned at 230 km radius) and at 300 ms after bounce (lines
with the shock discontinuity positioned at 150 km radius). The evolution in
the diffusive domains is in good agreement, but the shock in the approximative
model retracts somewhat faster than in the accurate model. With respect to a
possible delayed explosion, the approximation produces the more pessimistic
model.
(A color version of this figure is available in the online journal.)

4. GENERALIZATION FOR MULTIDIMENSIONAL
APPLICATIONS

So far, we have discussed the IDSA only in spherical
symmetry. As mentioned above, it is not the goal of this
paper to develop yet another approach that works only for
spherically symmetric models. Spherical symmetry is much
better treated with three-flavor Boltzmann transport where the
comprehensive equations of radiative transfer can consistently
be solved (Rampp & Janka 2002; Thompson et al. 2003;
Liebendörfer et al. 2004; Sumiyoshi et al. 2005). Hence, in
this section we discuss how the scheme extends to the three-
dimensional case.

The state vector U of a three-dimensional simulation only
differs from Equation (17) by the velocity v, which becomes
a vector !v = (vx, vy, vz). With the corresponding three direc-
tional components i = 1 · · · 3 in the momentum equation, the

D(f) = j(1− f)− χf
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Figure 1. Schematic representation of a fluid element in the diffusion source
approximation. It contains matter (lower part) and trapped radiation particles
(upper part). The interaction with other fluid elements can exclusively occur
by the exchange of streaming particles or the combined hydrodynamics of the
matter and trapped particles. Hence, streaming particles can be absorbed in
matter at the rate (j + χ )f s and trapped particles are converted to streaming
particles at the rate Σ. Within the fluid element, matter emits trapped particles at
the rate j and absorbs trapped particles at the rate (j + χ )f t. The emissivity in
the absorption term originates from the identity j (1 −f ) −χf = j − (j + χ )f ,
which hides the Pauli blocking factor in the absorption term.

However, even if we are now steering toward the hydrodynamic
limit, the evolution of the trapped particle distribution function
in our approximation should at least reproduce the correct
diffusion limit. The physical understanding of diffusion relies
on fast-moving particles with a very short transport mean free
path (see the derivation of the diffusion limit, Equation (A10), in
Appendix A). The divergence of the small net particle flux leads
to a slow drain (or replenishment) of particles in a fluid element.
In order to accommodate this diffusive drain (or replenishment)
of trapped particles in Equation (5), we have to implement it
through the so far unspecified source term Σ. In the framework of
our approximation, trapped particles are converted to streaming
ones (or vice versa) at the same rate diffusion would drain
(or replenish) particles in the fluid element. A comparison
of Equation (5) with Equation (A10) suggests the following
diffusion source:

Σ = 1
r2

∂

∂r

( −r2

3 (j + χ + φ)
∂f t

∂r

)
+ (j + χ )

1
2

∫
f sdµ. (6)

Isoenergetic scattering enters Equation (5) only via its opacity
φ in the expression for the transport mean free path λ =
1/(j + χ + φ) that determines the flux in Equation (6) (see
Appendix A). The additional term (j + χ )/2

∫
f sdµ accounts

for the absorption of streaming particles in matter. Its necessity
is best understood with the help of Figure 1.

Shown are the different particle fluxes that relate to one fluid
element. The fluid element contains both matter and trapped
particles. They interact by the emissivity j and absorption
(j + χ )f t (vertical arrows). The radiation particles leaving the
fluid element will convert into streaming particles at the rate Σ
(upper horizontal arrow). We do not include the possibility of a
direct emission of matter into the streaming particle component
because this process is more easily accounted for by a high
conversion rate Σ of trapped particles. On the other hand, we
account for streaming particles that are absorbed by matter as
represented by the arrow denoted by (j + χ )f s in Figure 1. In
the diffusion limit, the net particle exchange of the fluid element
with its environment, Σ − (j + χ )/2

∫
f sdµ, must correspond

to the diffusion term in Equation (A10). This is the case for our
choice of Σ in Equation (6).

If the above scheme is applied in a more transparent regime
where the diffusion approximation does not hold, the diffusion
source in Equation (6) may become arbitrarily large. This
would be inconsistent with the particle fluxes drawn in Figure 1
because over a long time the diffusion source cannot exceed the
emissivity of trapped particles without creating an unphysical
deficit in trapped particles. Instead, we would like the trapped
particle component to drop to zero and stay zero in the limit of
long mean free paths. This is achieved if we limit the diffusion
source in Equation (6) to Σ ! j . If the diffusion source and
emissivity reach equality, the matter absorptivity −(j + χ )f t

removes remaining trapped particles while all newly emitted
ones are directly converted to streaming particles that escape
the fluid element. With this limit imposed, the net interaction of
particles with matter in Figure 1 has the correct limit for large
mean free paths, j − (j + χ )f s.

The search for a lower bound to the diffusion source is less
straightforward. In principle, a negative Σ cannot be physically
excluded. It corresponds to streaming particles that become
trapped in a region of large opacity and low absorptivity. A limit
corresponding to the restriction f t ! 1 would suggest Σ " −χ .
However, f t = 1 can be an excessively large particle density
compared to the physically expected value. Much more stable
and more accurate results were obtained by the requirement that
f t ! j/(j + χ ), where j/(j + χ ) represents the equilibrium
distribution function. If one considers this condition for the
particle fluxes in Figure 1, this leads to the simple requirement
Σ " 0. Hence, the net absorption of particles in a fluid element
cannot exceed (j + χ )f s. The diffusion source from Equation
(6) then becomes

Σ = min
{

max
[
α + (j + χ )

1
2

∫
f sdµ, 0

]
, j

}

α = 1
r2

∂

∂r

( −r2

3 (j + χ + φ)
∂f t

∂r

)
. (7)

Assuming that the streaming particle density 1/2
∫

f sdµ was
known from the considerations described in the following
subsection, Equation (5) can be used to calculate the evolution
of the trapped particle component consistently with the diffusion
source specified in Equation (7).

2.3. Streaming Particles

The evolution equation for the streaming particle component
consists of all terms in Equation (3) that have not been consid-
ered in the evolution Equation (4) for the trapped particles. As
mentioned above, we neglect direct scattering from the trapped
component into the streaming component and vice versa. That
is

df s

cdt
+ µ

∂f s

∂r
+

[
µ

(
d ln ρ

cdt
+

3v

cr

)
+

1
r

] (
1 − µ2) ∂f s

∂µ

+
[
µ2

(
d ln ρ

cdt
+

3v

cr

)
− v

cr

]
E

∂f s

∂E
= − (j + χ ) f s

+ Σ +
E2

c (hc)3

[∫
Rf s′

dµ′ − f s
∫

Rdµ′
]

. (8)

For the evolution of streaming particles, we neglect the scatter-
ing integrals on the right-hand side of Equation (8), because the
streaming particle density is designed to be small compared to
the trapped particle density in regions where the scattering rate

13
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Neutrino transfer
0ms

1ms

100ms

our code works properly!
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研究の立ち位置
空間次元

ニュートリノ

１次元 (球対称)

２次元 (軸対称)

なし(断熱) 冷却のみ
or

手で加熱
輻射輸送

Yamada & Sato, 94 Buras+,  06Kotake+, 03

Takiwaki+, 09

Thompson+, 03

Liebendörfer+, 01

Sumiyoshi+, 05

Rampp & janka, 00

Burrows+,  06

Obergaulinger+, 05

３次元

Ohnishi+, 06Blondin & Mezzacappa, 03

Iwakami+, 08Blondin+, 07
Mikami+, 08

Suwa+, 09

Scheidegger+, 08

この領域だけがニュートリノ
駆動爆発の正否を議論できる

No explosion

Explosion!
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ray-by-ray treatment

ν

Yν, Zν
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Simulation Result
log10ρ entropy

Spherically symmetric case (13 M⦿)

No explosion is obtained, consistent with previous works.
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Simulation Result

The shock wave is largely deformed by SASI and convection in 2D case!

log10ρ entropy

Axisymmetric case (13M⦿)
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The efficiency of neutrino heating is much larger in 2D than 1D!
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最近の発展

1. νX を入れました (with leakage scheme)

2. 高速化に挑戦中 (cf. IDSA の粗視化)

3. ３次元計算が動いています (電子型νのみ) @ 天文台

20
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11.2 M⦿ w/ leakage
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13 M⦿ w/ leakage
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3次元 (13 M⦿)
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Discussion
1. How about progenitor difference?
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Fig. 1. The advection timescales as defined in Eq. (1) versus post-
bounce time. The lines are smoothed over time intervals of 5 ms.

Fig. 2. The timescale ratios, τadv/τheat, as functions of time. The lines
are smoothed over time intervals of 5 ms.

close to unity for a period of about 20 ms. This, however, is
shorter than the heating timescale τheat ! 30 ms. The pronounced
growth of the shock radius and of the advection timescale for
Model s11.2, which results in the large local maxima of the cor-
responding curves in Figs. 1, 2, and B.4, is produced by a con-
tinuous strong decrease of the mass accretion rate, see Fig. B.4.
After 113 ms post bounce this phase is over and the mass accre-
tion rate continues to decline less rapidly. The shock then retreats
quickly and finds a new quasi-stationary radius, where, however,
neutrino heating becomes less efficient again.

In Models s15s7b2, s20.0, and s1b the drop of ∂t Msh leads
also to shock expansion, but the effect is not strong enough to
change τadv significantly; also, in these models the composi-
tion interface reaches the shock so late that the shock is already
deep in the gravitational potential well and the postshock ve-
locities are considerably higher than in Models n13 and s11.2.
Therefore τadv/τheat remains well below unity.

In summary, we find that all our 1D simulations evolve both
qualitatively and quantitatively in a similar way. In spite of max-
imum shock radii around 130−150 km the models do not reveal
explosions. Only in the two lightest progenitor models, s11.2
and n13, the drop in ∂t Msh at the composition shell interfaces
is sufficiently steep and large and happens sufficiently early to
allow the shocks to reach a radius of 170 km. Nevertheless, the
models are far from producing explosions because the advec-
tion timescales remain always shorter than the timescales for
neutrino heating, and the phases where the ratio of both ap-
proaches unity are much shorter than the heating timescale it-
self. Therefore neutrino heating is not strong enough to drive an
explosion.

The one-dimensional models analyzed so far have one sig-
nificant shortcoming: they do not take into account hydrody-
namic instabilities in the stellar core. Convection, especially the
so-called hot bubble (HB) convection in the gain layer, has been
seen to strengthen the shock in previous multi-dimensional su-
pernova simulations. We can analyze our 1D models for the exis-
tence of Ledoux-unstable regions. For this purpose we introduce
the new variable (defined as parameter χ in Foglizzo et al. 2005),

ngrow(t) ≡
∫ rsh(t)

rgain(t)

[
ωBV(r′, t)

]
>0

dr′

vr(r′, t)
, (4)

where vr is the radial component of the velocity and the Brunt-
Väisälä frequency is defined as

ωBV(r, t) ≡ sgn
(
CL(r′, t)

)
√∣∣∣∣∣

CL(r′, t)
ρ(r′, t)

dφ (r′, t)
dr

∣∣∣∣∣ , (5)

with dφ /dr being the local gravitational acceleration. CL is the
Ledoux-criterion, which is given by

CL =

(
∂ρ

∂s

)

Ye ,p

ds
dr
+

(
∂ρ

∂Ye

)

s,p

dYe

dr
· (6)

It predicts instability in static layers if CL > 0. The
Brunt-Väisälä frequency denotes the growth rate of fluctuations,
if it is positive (instability), and the negative of the oscillation
frequency of stable modes, if it is negative. In the gain layer be-
tween shock and gain radius, however, the gas is falling inward
and the instability condition for Ledoux convection is not just
given by CL > 0 (Foglizzo et al. 2005). Here the parameter ngrow
is of crucial importance and represents the number of e-foldings
which short-wavelength perturbations will transiently be ampli-
fied during their advection from the shock to the gain radius.
Since advection has a stabilizing influence, the threshold for con-
vective instability in the gain layer is found to be ngrow ∼ 3, and
the growth of modes of lowest order (i.e., longest wavelengths)
becomes possible only when ngrow >∼ 5−7 (Foglizzo et al. 2005).
Figure 3 shows that only some of our models get close to the
critical value of ngrow for which Ledoux convection can be ex-
pected according to a linear perturbation analysis. In case of
Models s11.2 and n13, the value of ngrow clearly exceeds the
critical threshold because in these models high entropy jumps at
shell interfaces cause the shock to reach particularly large maxi-
mum radii (see Fig. B.4). This means that the postshock veloci-
ties entering the denominator in the integrand of Eq. (4) become
smaller than in other models. It should be noted, however, that
the discussion in Foglizzo et al. (2005) applies exactly only when
the initial perturbations are very small. In case of our relatively
large initial perturbations of order 1%, the fluctuations can grow
to the non-linear regime – which is not accessible to the stability
analysis – already for smaller values of ngrow.

allows core translational motion by introducing a Cartesian-like
grid in the inner core and, hence, that is capable of investigating
the core oscillation/acousticmechanism.VULCAN/2D is also the
only extant supernova code to perform 2D (not ‘‘ray by ray’’)
multigroup transport. Due to the finite difference character of 2D
codes that employ spherical coordinates all the way to the center,
to the singularity in those coordinates at that center, and to the
reflecting boundary condition frequently imposed at this center,
spherical coordinate codes are likely to inhibit core translational
motions artificially and, hence, to inhibit the ‘ ¼ 1 g-modes that
are central to the mechanism we have identified. Be that as it may,
there are many caveats to our study the reader should keep in
mind: (1) our calculations are Newtonian and not general relativ-
istic; (2) as stated above, we employ an approximate multigroup
transport algorithm in the neutrino sector; (3) numerical errors
are bound to have accumulated due to the need to calculate for
"1,000,000 time steps for each progenitor; and (4) the initial
seed perturbations are unknown (and unknowable?). Further-
more, the flow is fundamentally chaotic and a precise mapping
between initial configuration and final outcome is not possible.
This multidimensional radiation/hydrodynamical problem is quin-
tessentially meteorological in character. Nevertheless, along with
the work of Burrows et al. (2006), these are the first calculations to
explore the novel core oscillation/acoustic mechanism and to
venture into the late-time behavior of multidimensional core col-
lapse with multidimensional core motions and multidimensional/
multigroup transport.

2. PROGENITOR DENSITY PROFILES AND MASS
ACCUMULATION RATES

The basic evolutionary phases through which a core proceeds
in the context of the core oscillation/acoustic supernova mech-
anism have been described in Burrows et al. (2006), to which the
reader is referred for details. These are summarized in xx 1 and 6.
Burrows et al. (2006) explored the results for the 11M#model of
WW95 alone. Since that paper, we have calculated more models,
including the 25 M# model of WW95 and the rotating m15b6
model of Heger et al. (2005) (Ott et al. 2006a, 2006b), as well as
the 11.2, 13, 15, 20, and 25 M# progenitor models of WHW02
and the 13 and 15M# models of Nomoto & Hashimoto (1988).
All models explode, modulo any fallback at very, very late times
not yet accessible to supernova codes. This set of models con-
stitutes the most extensive and detailed radiation/hydrodynamic
study of the shock instability (SASI) and of the multidimensional
core motions undertaken to date.

For nonrotatingmodels, themost important determinant of the
outcome of collapse is the density profile in the inner thousands
of kilometers of the massive star progenitor. The structure of this
‘‘Chandrasekhar’’ core, with surrounding inner envelope, is de-
termined by the burning history to the point of instability. This
history reflects the various core- and shell-burning stages and is
a function in nature of zero-age main-sequence (ZAMS) mass,
mass loss, and metallicity. However, different theoretical groups
performing calculations of the evolution of massive stars and
using different approaches to semiconvection, overshoot, convec-
tion, and mass loss still do not end with the same configurations.
Figure 1 provides some density profiles for progenitor models
from WHW02, Nomoto & Hashimoto (1988), and WW95 at a
point just after collapse ensues. The first thing to note is that there
is a spread in structures and that the Chandrasekhar core is not the
same for all progenitors, but varies in structure and mass. The cor-
responding Ye and entropy profiles vary similarly. Secondly, as a
comparison of the two sets of 13 and 15 M# models shown in
Figure 1makes clear, the structure for a given progenitor mass has

not converged theoretically. Different groups arrive at different
profiles for the same ZAMS mass. Thirdly, the density profiles
are not necessarily monotonic with ZAMS progenitor mass: the
15M#model ofWHW02 has a shallower profile than that of their
20 M# model, and the 15 M# model of Nomoto & Hashimoto
(1988) has a steeper profile than that of their 13 M# model. Fi-
nally, the older 11M#model of WW95 and themore recent one of
WHW02 at 11.2M#, while both being steep, are not equally steep
in the same regions. The 11.2 M# model has lower densities be-
tween interiormasses from1.2 to 1.45M#, while the 11M#model
of WW95 has lower densities exterior to that mass (not shown).
The upshot is that the outcome of collapse and the character of
whatever explosion is ignited are not likely to be the same. In par-
ticular, the 11.2M# model of WHW02 boasts the thinnest mantle
of their whole model set, and this is consistent with the explana-
tion given in x 1 for why Buras et al. (2006b) obtained an SASI-
and neutrino-aided explosion, albeit weak, but no such explosion
for the more massive cores with shallower and thicker density
profiles. The even steeper profile of theONeMgmodel of Nomoto
& Hashimoto (1988) (not shown in Fig. 1) explains the results
of Kitaura et al. (2006), and the near vacuum of the outer en-
velopes used in the accretion-induced collapse simulations of
Dessart et al. (2006b) explains why they sawweak neutrino-aided
explosions.
The structures depicted in Figure 1 translate directly into mass

accretion rates (Ṁ ) through the stalled shock. Because the inner
shocked region and the core are out of sonic contact with this
mantle, Ṁ and its evolution after bounce are functions of this
structure alone. Hence, for diagnosing and ‘‘predicting’’ the out-
come of collapse, the postbounce behavior of Ṁ for a given pro-
genitor is useful and probably determinative. Figure 2 portrays the
evolution of the mass accretion rate for representative progen-
itor models evolved using the 2DMGFLD variant of VULCAN/
2D. The wide range of curves reflects the range of profiles
plotted in Figure 1. At 0.5 s after bounce, Ṁ varies from 0.06 to
0.5 M# s$1, while at 1.0 s it varies from 0.02 to 0.3M# s$1, an
order-of-magnitude span at both epochs. A glance at the behavior
of Ṁ for the 11.2M# model used in Buras et al. (2006b) shows
its steep drop at early times and the corresponding lower accretion
tamp. Such a precipitous drop is not in evidence for the other,
more massive WHW02 progenitors portrayed in Figure 2.

Fig. 1.—Profiles of the mass density (in units of g cm$3) vs. Lagrangean mass
(in M#) of representative massive star progenitor cores of WHW02 (11.2 M#:
black; 13M#:magenta; 15M#: blue; 17M#: turquoise; 20M#: green; 25M#: red ),
Nomoto & Hashimoto (1988; 13M#: magenta; 15M#: blue), and WW95 (11M#:
dotted line). See text for a discussion on the import of these profiles.

BURROWS ET AL.418 Vol. 655
Buras+ 06 Burrows+ 07

Exploding models by neutrino-heating mechanism.
The other models should be investigated!

ratio of timescales in 1D density profiles at precollapse
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Discussion
1. How about progenitor difference?

occur at all (Baraffe et al. 2001) because the progenitor stars
are pulsationally unstable.

4. SUPERNOVAE

4.1. Supernovae of Type IIp and IIL

It has long been recognized that massive stars produce
supernovae (Baade & Zwicky 1934). In this paper, we
assume the progenitor properties for the different core-
collapse supernova types listed in Table 1.

The lower and upper limits of main-sequence mass that
will produce a successful supernova (‘‘M-lower ’’ and ‘‘M-
upper ’’)—one with a strong outgoing shock still intact at
the surface of the star—have long been debated. On the
lower end, the limit is set by the heaviest star that will eject

its envelope quiescently and produce a white dwarf.
Estimates range from 6 to 11 M!, with smaller values char-
acteristic of calculations that are employed using a large
amount of convective overshoot mixing (Marigo, Bressan,
& Chiosi 1996; Chiosi 2000) and the upper limit determined
by whether helium shell flashes can eject the envelope sur-
rounding a neon-oxygen core in the same way they do for
carbon-oxygen cores (x 3). It may also slightly depend on
metallicity (Cassisi & Castellani 1993). Here we will adopt
9M! forM-lower.

The value ofM-upper depends on details of the explosion
mechanism and is even more uncertain (x 6.2). Fryer &
Kalogera (2001) estimate 40 M!, but calculations of explo-
sions even in supernovae as light as 15M! give widely vary-
ing results. It is likely that stars up to at least 25 M! do
explode, by one means or another, in order that the heavy
elements are produced in solar proportions. The number
of stars between 25 and 40 M! is not large. Here we have
taken what some may regard as a rather large value:
M-upper ¼ 40M! (Fig. 2).

For increasing metallicity, mass loss reduces the hydro-
gen envelope at the time of core collapse. A small hydrogen
envelope (d2 M!) cannot sustain a long plateau phase in
the light curve, and only Type IIL/b supernovae or, for very
thin hydrogen layers, Type IIb supernovae result (Barbon,
Ciatti, & Rosino 1979; Filippenko 1997). It is also necessary

Fig. 1.—Remnants of massive single stars as a function of initial metallicity (y-axis; qualitatively) and initial mass (x-axis). The thick green line separates
the regimes where the stars keep their hydrogen envelope (left and lower right) from those where the hydrogen envelope is lost (upper right and small strip at
the bottom between 100 and 140M!). The dashed blue line indicates the border of the regime of direct black hole formation (black). This domain is interrupted
by a strip of pair-instability supernovae that leave no remnant (white). Outside the direct black hole regime, at lower mass and higher metallicity, follows the
regime of BH formation by fallback (red cross-hatching and bordered by a black dot-dashed line). Outside of this, green cross-hatching indicates the formation
of neutron stars. The lowest mass neutron stars may be made by O/Ne/Mg core collapse instead of iron core collapse (vertical dot-dashed lines at the left). At
even lower mass, the cores do not collapse and only white dwarfs are made (white strip at the very left).

TABLE 1

Progenitor Properties for Different
Core-Collapse Supernovae

SNType Pre-SN Stellar Structure

IIp....................... e2M!H envelope
IIL/b .................. d2M!H envelope
Ib/c..................... NoH envelope

290 HEGER ET AL. Vol. 591

The properties of progenitors do not change monotonically so that the 
numerical simulations with different progenitors should be performed...
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Discussion
2. How about EOS difference?
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from H.-Th. Janka’s presentation

Inclusion of hyperon/quark matter, which softens 
EOS is better for explosion?
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個人的意見
爆発の十分条件は？？
よく議論される時間スケールの話（今回も使いましたが、、、）は実は必

要条件でしかない。より robust な条件は何？

対流の３次元効果はいかほど？
もっと対流について勉強が必要

“chaotic” と言って終わり、ではなくより定量的な予言
をするには何が必要？
ニュートリノ自己相互作用によるニュートリノ振動の
影響は定量的にはどれほど？
その他 missing physics には何がある？axion とか？
(e.g., Schuramm & Wilson 82)
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まとめと今後の展望(?)

超新星シミュレーション（incl. ν輻射輸送）も
（流体）多次元の世界に

今後はシミュレーション結果を用いて、理論構
築の段階に進むのが望ましい
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