

超新星とニュートリノ: 爆発、元素合成、SRN検出

共同研究者:川越至桜、茂山 俊和、吉田 敬(東京大学) 梶野 敏貴、西村信哉(国立天文台) 鈴木重太郎(総合研究大学院大学) G.J. Mathews (Univ. of Notre Dame)

第2回「クォークカ学・原子核構造に基づく爆発的天体現象と元素合成」研究会 June 1st 2010

Outline

- ・ニュートリノ元素合成
 - 重力崩壊型超新星(II, Ib, Ic型)
 - ニュートリノ元素合成プロセス(Li, B) (Nakamura+ 04; 06; 10, in prep.)
- ジェット状爆発の数値シミュレーション
 コラプサーモデル
 - ニュートリノ対消滅によるジェット生成

(Harikae+ 09; 10)

• ニュートリノ背景放射

(Suzuki+ 10, in prep.)

Outline

- ・ニュートリノ元素合成
 - 重力崩壊型超新星(II, Ib, Ic型)
 - ニュートリノ元素合成プロセス(Li, B)

(Nakamura+ 04; 06; 10, in prep.)

- ・ ジェット状爆発の数値シミュレーション
 - コラプサーモデル
 - ニュートリノ対消滅によるジェット生成
 (Harikae+ 09; 10)
- ニュートリノ背景放射 (Suzuki+ 10, in prep.)

Neutrino-induced Nucleosynthesis

- Huge number of neutrinos (>10⁵⁸!)
- $v_e, \overline{v}_e, v_{\mu\tau} = (v_\mu, v_\tau, \overline{v}_\mu, \overline{v}_\tau)$

 $<\!\!\varepsilon_{\nu e}\!\!> < <\!\!\varepsilon_{\bar{\nu}e}\!\!> < <\!\!\varepsilon_{\nu\mu\tau}\!\!>$

- Some interact with materials and induce nucleosynthesis
 - => The ν -process (Woosley+ 1990)
- ⁷Li in He layer & ¹¹B in C layer

> The ν -process

- Neutral current reaction: $(Z, A) + \nu \rightarrow (Z-1, A-1) + \nu' + p$ $(Z, A) + \nu \rightarrow (Z, A-1) + \nu' + n$
- Charged current reaction:

 $(Z, A) + \nu_e \rightarrow (Z+1, A) + e^ (Z, A) + \overline{\nu_e} \rightarrow (Z-1, A) + e^+$

Boron production

$${}^{12}C(v, v'n){}^{11}C, {}^{12}C(v, v'p){}^{11}B$$

 ${}^{12}C(v_e, e^-p){}^{11}C, {}^{12}C(\overline{v}_e, e^+n){}^{11}B$
 \downarrow
 ${}^{11}B$ in 20 min.

Production Sites of ^{6,7}Li, ⁹Be, ^{10,11}B

» Big Bang Nucleosynthesis (BBN)

Universal ⁷Li
 (Spite plateau)

Production Sites of ^{6,7}Li, ⁹Be, ^{10,11}B

> AGB stars

Core-collapse SNe

the neutrino-process

³He (α, γ) ⁷Be Cameron (1955) Be transport mechanism

⁷Be (e⁻,v_e) ⁷Li (α , γ) ¹¹B

Production Sites of ^{6,7}Li, ⁹Be, ^{10,11}B

Cosmic-ray (CR) interactions

- Spallation reactions
 - H,He + C,N,O \rightarrow ^{6,7}Li, ⁹Be, ^{10,11}B + fragiles

• $\epsilon > 5$ MeV/nucleon

Calculations: SN Ic Explosion

- Progenitor model:
 - SN 1998bw model (Nakamura+ 01)
 WR type (C/O) star
 M=15*M*•, *E*ex=3×10⁵² erg
- Numerical code:
 - 1-dimensional hydrodynamic code
 - effects of special relativity (KN & Shigeyama 2004)
- Equations:
 - Relativistic hydrodynamic eq.

$$\partial_{\mu} \left(\rho v^{\mu} \right) = 0$$
$$\partial_{\mu} T^{\nu \mu} = 0$$

- EOS

$$p = \frac{a}{3}T^4 + \frac{k\rho T}{\mu m_H}$$

Calculations: the v-process

◆ Neutrino luminosity (Woosley+ 90):

$$L_{vi}(t) \propto \frac{E_{v}}{\tau_{v}} \exp(-\frac{t - r/c}{\tau_{v}})$$
$$v_{i}: v_{e\mu\tau}, \overline{v}_{e\mu\tau}$$

- decay time: $\tau_v = 3 \text{ s}$
- total neutrino energy: $E_v = 3 \times 10^{53}$ ergs

Energy spectra: Fermi-Dirac distribution (kTνe, kTνe, kTνμτ) =
(3.2, 5, 6) MeV ← normal Tνμτ
(3.2, 5, 8) MeV ← high Tνμτ

 Using nuclear reaction network consisting of 291 species of nuclei

Calculations: Spallation Reactions H,He + C,O $\rightarrow {}^{6,7}Li,{}^{9}Be,{}^{10,11}B$ ex.) $O+H \rightarrow Be$ ⁹Be ${}^{12}C(v_e, e^+n){}^{11}B$ 10 H+C ·H+N σ [mb] ••H+O ···He+He --He+N -He+O Cross sections (Read & Viola 1984; Mercer+ 2001) ^{0.1} 100 1000 10 ε [MeV/A] **C,O** $\frac{dN_{Be}}{dt} = n_H \int \sigma^{Be} \sigma_{,H}(E) \frac{F_o(E,t)}{A_0 m_H} v_o(E) dE$ number density of number of ejecta (O) with -t=0.1Mvr -t=1Myr. target (H) in ISM energy $E \sim E + dE$ at time t --t=5Myr 10^{-6} **Transport equation** 10^{-8} $\frac{\partial F_i(E,t)}{\partial t} = \frac{\partial [\omega_i(E)F_i(E,t)]}{\partial E} - \frac{F_i(E,t)}{\Lambda}\rho v_i(E)$ 10-12 SN 1998bw model 10^{-14} $n_{\rm H} = 1 \text{ cm}^{-3}$ (ISM) ω_i : energy loss rate (ionization) 10^{-1} 10 100 1000 10^{4} Λ : loss length (spallation & escape) Energy [MeV/nucleon]

Results

- \bullet LiBeB from the $\nu\text{-}process$
 - ¹¹B production in C-rich layers
 - ... and in the innermost region (incl. ⁷Li !)
 - more LiBeB in high $T_{v_{\mu\tau}}$ model
- LiBeB from spallations
 - 0.04*M* \odot of ejecta attain ε > 10 MeV/A
 - plenty of LiBeB
 - predominantly from O spallation

High $T_{\nu_{\mu,\tau}}$ Normal $T_{\nu_{\mu,\tau}}$ Spallation Species (M_{\odot}) (M_{\odot}) (M_{\odot}) ⁶Li 1.67×10^{-11} 5.91×10^{-11} 2.38×10^{-7} 7 Li 2.50×10^{-8} 7.41×10^{-9} 3.31×10^{-7} 4.49×10^{-11} 1.08×10^{-10} ⁹Be 9.99×10^{-8} 2.78×10^{-9} ^{10}B 1.29×10^{-9} 4.38×10^{-7} ^{11}B 2.69×10^{-7} 5.46×10^{-7} 1.34×10^{-6}

H,He + C,O \rightarrow ^{6,7}Li,⁹Be,^{10,11}B hcl. ⁷Li !) eV/A C,O

LIGHT ELEMENT YIELDS FROM SN IC MODEL

Results - compared with observation

- B isotope ratios (¹¹B/¹⁰B)
 - 4.05 ± 0.05 (meteorites)
 - \sim 3 (spallations)
 - \sim 200 (the v-process)
 - 3.66-4.28 (spallation+v)

LIGHT ELEMENT YIELDS FROM SN IC MODEL

Sp	ecies	Normal $T_{\nu_{\mu,\tau}}$ (M_{\odot})	$\begin{array}{c} \text{High } T_{\nu_{\mu,\tau}} \\ (M_{\odot}) \end{array}$	Spallation (M_{\odot})
⁶ L ⁷ L ⁹ B ¹⁰ I ¹¹ I	i e 3 3	$\begin{array}{c} 1.67 \times 10^{-11} \\ 7.41 \times 10^{-9} \\ 4.49 \times 10^{-11} \\ 1.29 \times 10^{-9} \\ 2.69 \times 10^{-7} \end{array}$	$\begin{array}{c} 5.91 \times 10^{-11} \\ 2.50 \times 10^{-8} \\ 1.08 \times 10^{-10} \\ 2.78 \times 10^{-9} \\ 5.46 \times 10^{-7} \end{array}$	$\begin{array}{c} 2.38\times 10^{-7}\\ 3.31\times 10^{-7}\\ 9.99\times 10^{-8}\\ 4.38\times 10^{-7}\\ 1.34\times 10^{-6}\end{array}$

Results - compared with observation

- B isotope ratios (¹¹B/¹⁰B)
 - 4.05 ± 0.05 (meteorites)
 - \sim 3 (spallations)
 - \sim 200 (the v-process)
 - 3.66-4.28 (spallation+v)
- Its contribution is ... low (
- SNe Ic might

Species Normal $T_{\nu_{\mu,\tau}}$ High $T_{\nu_{\mu,\tau}}$ Spallation (M_{\odot}) (M_{\odot}) (M_{\odot}) ⁶Li 1.67×10^{-11} 5.91×10^{-11} 2.38×10^{-7} ⁷Li 2.50×10^{-8} 7.41×10^{-9} 3.31×10^{-7} ⁹Be 4.49×10^{-11} 1.08×10^{-10} 9.99×10^{-8} 10 B 1.29×10^{-9} 2.78×10^{-9} 4.38×10^{-7} ~1% 2.69×10^{-7} 5.46×10^{-7} 1.34×10^{-6}

LIGHT ELEMENT YIELDS FROM SN IC MODEL

Summary - 1.

- SNe Ic : a class of CCSNe
- We investigated LiBeB production via the v-process and spallations in SNe Ic.
- The v-process synthesizes ¹¹B in C/O layer (& innermost layer).
- The outermost C/O nuclei accelerated by explosion interact with ISM and produce ^{6,7}Li, ⁹Be, ^{10,11}B via spallation reactions.
- ${}^{11}B/{}^{10}B$ (v-process +spallations) = 3.67-4.28
- Dense CSM \rightarrow localized LiBeB production and star formation \rightarrow anomalous star
- How about SNe lb?
 - the $\nu\text{-}process$ produces ^7Li in the He layer
 - fusion reaction of α -particles produces Li isotopes
 - nitrogen may be included if low-Z and rapidly rotating, leading to rich LiBeB production

Outline

- ・ニュートリノ元素合成
 - 重力崩壊型超新星(II, Ib, Ic型)
 - ニュートリノ元素合成プロセス(Li, B) (Nakamura+ 04; 06; 10, in prep.)
- ジェット状爆発の数値シミュレーション
 コラプサーモデル
 - ニュートリノ対消滅によるジェット生成

(Harikae+ 09; 10)

 ニュートリノ背景放射 (Suzuki+ 10, in prep.)

How to produce outflow ?

MHD :

JET

e[†]e⁺

JET

fire ball

accretion disk

magnetic

Dynamo?

Blanford-Znajek mechanism?

Fields

Proga et al. (2003); Mizuno et al. (2006); Fujimoto et al. (2006); Nagataki et al. (2007); Nagataki (2009); Harikae et al(2009 a) 問題点: <u>GRBを説明できそうと言われているモデ</u> <u>ルは、磁場が強すぎる or 回転が速すぎる。</u>

Neutrino (pair annihilation):

Ruffert et al. (1997); Ruffert & Janka (1998), Asano&Fukunaga (200,2001), Nagataki et al. (2007), Birkl et al(2008)

問題点:<u>アウトフローすら出ない。</u>

ニュートリノ起源の方が 良く分かってない

Intro Our study

Harikae et al. 2009b (submitted to ApJ) Harikae et al. 2009c (submitted to ApJL)

- ニュートリノ対消滅を計算する。
 - ◆ Reaction rate が密度によらないため、<u>低密度高エネルギー</u>になる。
 - ◆ 最重要だが、ほぼ全ての研究で無視されてきた(計算が難しい)。
- 大質量星の重力崩壊後~10 sの進化を追う。
 - ◆ 多くの研究は
 - ◆ 重力崩壊後 ~ 1 s の進化しか計算しない。(LGRB ~ 30 s)
 - 初期条件として平衡状態にあるディスクをおく。
 のどちらか。

反応率の特殊相対論的表式 Harikae et al. 2009b (submitte

$$\frac{dq_{\nu\bar{\nu}}^+(\boldsymbol{r})}{dtdV} = \iint f_{\nu}(p_{\nu},\boldsymbol{r})f_{\bar{\nu}}(p_{\bar{\nu}},\boldsymbol{r})\sigma|\boldsymbol{v}_{\nu}-\boldsymbol{v}_{\bar{\nu}}|(\epsilon_{\nu}+\epsilon_{\bar{\nu}})d^3\boldsymbol{p}_{\nu}d^3\boldsymbol{p}_{\bar{\nu}}$$

上式のf、e、p等はlab frameで測られた量。

しかし、一般にf、e、pは熱力学量から求められるため、rest frameで定義する方が楽。

式変形して、以下のローレンツ変換を代入

$$dtdV = dt_0 dV_0$$

$$d\epsilon = \frac{\epsilon}{\epsilon_0} d\epsilon_0$$

$$d\Omega = \frac{\epsilon_0^2}{\epsilon^2} d\Omega_0$$

$$\epsilon = \gamma (1 + \beta \mu_0) \epsilon_0$$

$$= \epsilon_0 / [\gamma (1 - \beta \mu)]$$

反応率の特殊相対論的表式
Harikae et al. 2009b (submitte
ニュートリノ対消滅の特殊相対論的加熱率
$$\frac{dq_{\nu\bar{\nu}}(r)}{dtdV} = 2cKG_{\rm F}^2 \int d\theta_{\nu}d\phi_{\nu}d\theta_{\bar{\nu}}d\phi_{\bar{\nu}}$$
$$\times [\xi_{\nu}^5(r,\Omega_{\nu})\xi_{\bar{\nu}}^4(r,\Omega_{\bar{\nu}})E_{\nu,0}(r,\Omega_{\nu})N_{\bar{\nu},0}(r,\Omega_{\bar{\nu}})$$
$$+\xi_{\nu}^4(r,\Omega_{\nu})\xi_{\bar{\nu}}^5(r,\Omega_{\bar{\nu}})N_{\nu,0}(r,\Omega_{\nu})E_{\bar{\nu},0}(r,\Omega_{\bar{\nu}})]$$
$$\times [1 - \sin\theta_{\nu}\sin\theta_{\bar{\nu}}\cos(\varphi_{\nu} - \varphi_{\bar{\nu}}) - \cos\theta_{\nu}\cos\theta_{\bar{\nu}}]^2\sin\theta_{\nu}\sin\theta_{\bar{\nu}}$$

$$\begin{aligned} \xi_{\nu}(\boldsymbol{r}, \Omega_{\nu}) &= \epsilon_{\nu}/\epsilon_{\nu,0} \\ &= 1/[\gamma_{\nu}(1-\mu_{\nu}\beta_{\nu})] \end{aligned}$$

$$E_{\nu,0}(\boldsymbol{r},\Omega_{\nu}) = \int \epsilon_{\nu,0}^{4} f_{\nu,0}(\boldsymbol{r}_{\nu,0},\boldsymbol{p}_{\nu,0}) d\epsilon_{\nu,0},$$

$$N_{\nu,0}(\boldsymbol{r},\Omega_{\nu}) = \int \epsilon_{\nu,0}^{3} f_{\nu,0}(\boldsymbol{r}_{\nu,0},\boldsymbol{p}_{\nu,0}) d\epsilon_{\nu,0},$$

座標系の模式図

ニュートリノ対消滅の計算手法 1/2 Harikae et al. 2009b (submitte

◆ ニュートリノ加熱をtime-dependentで計算す るための手法

1. 一般相対論的効果(bending etc)を無視

- 2. ニュートリノ球からの電子型vの輻射のみ考慮
- 3. 分布関数をFermi-Dirac分布で近似
- 4. 積分変数を変数変換
- 5. 対消滅は50stepに一回だけ計算

ニュートリノ対消滅の計算手法 1/2 - 1 Harikae et al. 2009b (submitte 一般相対論的効果を無視

Birkl et al.(2008)

ニュートリノ消滅の計算手法 1/2 - 3 Harikae et al. 2009b (submitte 分布関数をFermi-Dirac分布で近似 ◆ 温度Tはτ=2/3となる位置のものを用いる。

$$f_{\nu}(\boldsymbol{r}_{\nu,0}, \boldsymbol{p}_{\nu,0}) = \frac{1}{(hc)^3} \frac{dn_0}{d\epsilon_0 d\Omega_0 dt_0 dV_0} \\ = \frac{1}{(hc)^3} \frac{1}{\exp(\epsilon_{\nu,0}/kT_{\nu,0}) + 1}$$

ニュートリノ消滅の計算手法 1/2 - 4

Harikae et al. 2009b (submitte

完全に無駄

$$\frac{dq_{\nu\bar{\nu}}^{+}(\boldsymbol{r})}{dtdV} = 2cKG_{\mathrm{F}}^{2}\int d\theta_{\nu}d\phi_{\nu}d\theta_{\bar{\nu}}d\phi_{\bar{\nu}} \\
\times [\xi_{\nu}^{5}(\boldsymbol{r},\Omega_{\nu})\xi_{\bar{\nu}}^{4}(\boldsymbol{r},\Omega_{\bar{\nu}})E_{\nu,0}(\boldsymbol{r},\Omega_{\nu})N_{\bar{\nu},0}(\boldsymbol{r},\Omega_{\bar{\nu}}) \\
+\xi_{\nu}^{4}(\boldsymbol{r},\Omega_{\nu})\xi_{\bar{\nu}}^{5}(\boldsymbol{r},\Omega_{\bar{\nu}})N_{\nu,0}(\boldsymbol{r},\Omega_{\nu})E_{\bar{\nu},0}(\boldsymbol{r},\Omega_{\bar{\nu}})] \\
\times [1-\sin\theta_{\nu}\sin\theta_{\bar{\nu}}\cos(\varphi_{\nu}-\varphi_{\bar{\nu}})-\cos\theta_{\nu}\cos\theta_{\bar{\nu}}]^{2}\sin\theta_{\nu}\sin\theta_{\bar{\nu}}$$

> この積分の意味 :

「対消滅を起こす位置で、角度積分しなさい」

これはnumerical costを増やす。

ニュートリノ消滅の計算手法 1/2 - 4 Harikae et al. 2009b (submitte

積分変数を変数変換

$$d\Omega_{\nu} = J_{r\mu}(\mu_{\nu}, \phi_{\nu}, r_{s,\nu}, \mu_{s,\nu}) |_{\phi_{s,\nu} = \phi_{\rm sph,\nu}} dr_{s,\nu} d\mu_{s,\nu} + J_{\mu\phi}(\mu_{\nu}, \phi_{\nu}, \mu_{s,\nu}, \phi_{s,\nu}) |_{r_{s,\nu} = r_{\rm sph,\nu}} d\mu_{s,\nu} d\phi_{s,\nu} + J_{\phi r}(\mu_{\nu}, \phi_{\nu}, \phi_{s,\nu}, r_{s,\nu}) |_{\mu_{s,\nu} = \mu_{\rm sph,\nu}} d\phi_{s,\nu} dr_{s,\nu},$$

積分領域をニュートリノ球に限定することで、 最も効率的に計算できる

disk

積分変数とnumerical grid を一対一に対応させた

ニュートリノ消滅の計算手法 1/2 - 5 Harikae et al. 2009b (submitte

◆ 対消滅は50stepに一回だけ計算

Time step Δt ~100 µs に対して t_{var} ~10 ms なので、十分。
 過去の例: Nagataki et al(2007): 100 step に一回。

ニュートリノ対消滅の計算手法 2/2 Harikae et al. 2009b (submitte Ray-Traceによって以下のtrajectoryを無視。 ニュートリノ球の内側に向かって放射される。 1. Optically thick regionを通過する。 2. 3. $\mathbf{r} < \mathbf{r}_{\mathrm{H}}$ になる。 37 t >> 1

Numerical methods HD simulation

Harikae et al. 2009b (submitte Harikae et al. 2009c (submitte

HD simulation (<u>ニュートリノ加熱(対消滅)を含める</u>)

- Special relativistic MHD code (Takiwaki et al 2009)
- Neutrino heating is calculated by ray-tracing in flat timespace.
- Realistic EOS of Shen et al (1998) is implemented.
- Initial data is taken from 35OC model (Woosley&Heger 2006)
 - Calculated by 256 nodes@ XT4

先行研究との違い:ニュートリノ対消滅を入れた アウトフローが出たら、Neutrino-driven

2 step for simulation

対消滅計算は非常に重いので、数値計算を <u>
二段階に分ける</u>。

Step 1:対消滅を無視 & post-process で評価 評価方法: $\tau_{dyn}/\tau_{heat} > 1$ or not ⇒ 対消滅が効く時刻 t_0 を求める Step 2:時刻 t_0 から対消滅を入れて計算

Disk formation

Harikae et al. 2009b (submitte

重力崩壊後、BH周りにディスク形成。

Neutrino luminosity

Harikae et al. 2009c (submitte

ニュートリノ光度はエディントン光度 $L_E \sim 10^{53}$ erg/s に近づく (at ~ 10 s in model with $j_{ms} < j < j_{mb}$)

Pair annihilation

Harikae et al. 2009b (submitte

対消滅計算の開始時刻

Harikae et al. 2009c (submitte

 τ_{dyn}

>> Theat, となった時刻 (9.0 s) から、対消滅を入れて再計算

Neutrino-driven outflow

Harikae et al. 2009c (submitte

Properties of outflow

Harikae et al. 2009c, submitted

Outline

- ・ニュートリノ元素合成
 - 重力崩壊型超新星(II, Ib, Ic型)
 - ニュートリノ元素合成プロセス(Li, B) (Nakamura+ 04; 06; 10, in prep.)
- ジェット状爆発の数値シミュレーション
 コラプサーモデル
 - ニュートリノ対消滅によるジェット生成

(Harikae+ 09; 10)

• ニュートリノ背景放射

(Suzuki+ 10, in prep.)

画像:国立天文台HPより

写真:東京大学宇宙線研究所 神岡宇宙素粒子研究施設 HPより

SRN検出率を決定する要素:

(1): 超新星発生率(前駆天体の質量(M)の関数)

(2):宇宙膨張(宇宙論パラメータΩ)

(3): 超新星爆発の際のニュートリノの発生数

(4):星形成率(赤方偏移(Z)の関数)

(5): 超新星爆発の際のニュートリノ温度

(6):ニュートリノ振動パラメータ・ニュートリノ質量階層

※:超新星前駆天体の質量分布のSRNへの影響

※:ガンマ線バーストからのSRNへの寄与

導入つづき

- 2)ニュートリノ温度(T_{ν}):
- ニュートリノ温度 (T_{ν}) 不定性あり→観測量への影響大

(先行研究:T_{νμ},T_{ντ}=4.0MeV~8.0MeV)

超新星元素合成からTνを制限→SRN検出率をより精密に予測 Tν_e,T $\overline{\nu}$ e – 超新星爆発 rー過程 Tν_{μ,τ} – ¹¹B/¹⁰B比率に関する銀河化学進化モデル – ¹¹B/¹⁰B比率の観測値(隕石等)

SRNの Number Flux

Eq.(3):Differential Number Flux of SRNs

(単位面積・単位エネルギー幅あたりSRN入射数)

星形成率(赤方偏移(Z)の関数)

 ρ_0 : 1.04×10⁻²

p+:2.08×10⁻²

ρ-:5.90×10⁻³

 $\alpha : 4.22$

β:-0.207

B:2.7×10⁶

※3:誤差棒なし:同じ観

測手段・zの近い領域の

※4:誤差棒の上下または 左右の長さが異なる:長い

Plotに準ずる

ほうに合わせる

v:-11.3

C:6.37

 $\dot{\rho}_*(z) = \dot{\rho}_0 \left[(1+z)^{\alpha\eta} + \left(\frac{1+z}{B}\right)^{\beta\eta} + \left(\frac{1+z}{C}\right)^{\gamma\eta} \right]^{1/\eta},$ 1 (1)SFR [M_{sun}/yr/Mpc³] 0.1 Horiuchi et al. (2009)0.01 0.001 ※1ダストの影響に対する 補正あり 1e-04 ※2:誤差棒が上限のみ 1 2 0 3 4 または下限のみ:除外 \mathbf{Z} (統計処理上の都合)

Log SFR(M@/Mpc³/Yr)

赤:infrared 青: optical ピンク: ultra violet 水色:X-ray,γ-ray 緑:radio

Ζ

7

6

5

SRNのエネルギースペクトル

●本研究:

- Fermi-Dirac 分布を想定
 ニュートリノ振動を考慮
 T v (新たに制限)
 ・ηv:今回発表では0
- 右表:超新星数値実験から得られた計算結果(ニュートリノ温度・ 化学ポテンシャル等)
 ※1:化学ポテンシャル:取り扱い はまちまち
 ※2:反応断面積の化学ポテン シャル依存性:~10% (Yoshida et al., 2005)

$$\frac{dN_{\nu}}{dE_{\nu}} = \frac{E_{\nu}^{total}/6}{7\pi^4/120} \frac{x^2}{exp(x-\eta)+1}$$
(Yoshida et al. 2005)

$$x = E \nu / T \nu$$

発表年	モデル名称	Tve	Tve-	Tvx	ηve	ηve-	ηνχ	<e>or√<e^2></e^2></e>
1987	Bruenn	3.17	3.80	7.93				
1990	Myra&Burrows	3,49	4.12	7.60				<e></e>
1998	Totani-0.3s	3.80	4.76	6.03	0	0	0	
1989b	Janka&Hillebrand	2.54	4.44	5.08	0	0	0	<e></e>
	Apmodel1	4.13	4.76	5.71	2.8	3.4	1.1	
2003	-KRJ	3.80	4.44	4.44	1.4	2.7	0.3~1.6	<e></e>
	Apmodel2	4.13	5.07	5.40	1.7	3	0.8	
2003	-KRJ	4.13	4.76	5.07	2.1	3.2	0.8	<e></e>
2003	Buras	4.48	5.24	5.33				
2001	Mezzakappa	5.08	6.03	7.60	-	-	-	
2001	Liebendorfer	6.03	6.66	7.60				√ <e^2></e^2>
2003	Ando,Sato mean	3.49	5.08	6.98	-	-	-	$\langle e \rangle$
2007	*Baker et al	4.13	4.89	4.98	-	-	-	

(Keil,Raffelt&Janka,2003より改変)

Tvμ, Tvτの推定

 \Rightarrow 4.3MeV \leq Tvµ,Tvτ \leq 6.5MeV

Yoshida et al. (2008)

Tveの推定

+字plot:数値実験で得られた
 Tvの値の組み合わせ

• Tve < T $\overline{ve} <$ Tvx • Tvx=4.3~6.5MeV (Yoshida et al.,2008)

 \Rightarrow 3.9MeV < Tve < 6.0MeV

ニュートリノ振動

・ニュートリノが超新星内部を 通過するとき、ニュートリノ振動に よりフレーバーが変化する。 case A 順質量階層および 逆質量階層(sin²2 θ 13<<10⁻⁵): case B 逆質量階層($\sin^2 2 \theta_{13}$)):

※右肩の添字"0": ニュートリノ振動前の 粒子を示す。

$$\frac{dN_{\bar{\nu}_e}}{dE_{\bar{\nu}_e}} = |U_{e1}|^2 \frac{dN_{\bar{\nu}_1}}{dE_{\bar{\nu}_1}} + |U_{e2}|^2 \frac{dN_{\bar{\nu}_2}}{dE_{\bar{\nu}_2}} + |U_{e3}|^2 \frac{dN_{\bar{\nu}_3}}{dE_{\bar{\nu}_3}}
= |U_{e1}|^2 \frac{dN_{\bar{\nu}_e}^0}{dE_{\bar{\nu}_e}} + \left(1 - |U_{e1}|^2\right) \frac{dN_{\nu_x}^0}{dE_{\nu_x}},$$
(7)

$$\frac{dN_{\bar{\nu}_e}}{dE_{\bar{\nu}_e}} = |U_{e3}|^2 \frac{dN_{\bar{\nu}_e}^0}{dE_{\bar{\nu}_e}} + \left(1 - |U_{e3}|^2\right) \frac{dN_{\nu_x}^0}{dE_{\nu_x}} \simeq \frac{dN_{\nu_x}^0}{dE_{\nu_x}}.$$
 (9)

Dighe,Smirnov(2000)

写真提供: 東京大学宇宙線研究所 神岡宇宙素粒子研究施設

Mt級SRN検出装置を想定 ・水チェレンコフ式、GdCl₃添加

- •有効容積:1.0Mton
- •SRN検出エネルギー下限:10.0MeV
- •反応:p+ $\overline{ve} \rightarrow e^+ + n$
- ・反応断面積: Strumia&Vissani(2003)による

3 結果

1: 単位面積・時間・エネルギー幅当たりSRN入射数

SN model:1987A(16.2M_,1.0×10⁵³erg))

 $Tv\mu,\tau$: 6.0MeV, $T\overline{ve}$: 5.0MeV

2: SRN検出率の星形成率依存性

SN model:1987A(16.2M⊚,1.0×10⁵³erg)) Tvµ,τ:6.0MeV,Tve:5.0MeV ※veのみの検出率

4 まとめ ・超新星元素合成から推定したTvを用いて SRNエネルギースペクトルを計算 ・SRN エネルギースペクトル → 検出数

ニュートリノ温度(T_v)の上限・下限を考慮することで、SRN検出率の不定性を減ずることができた。
 ・現段階では、ニュートリノ質量階層・混合角に制限を加えることは困難。

Summary

- ・ 超新星爆発におけるニュートリノの役割
- ニュートリノ元素合成
 - 軽元素 (Li, B)、重元素
 - Ib/c型の場合破砕反応との組み合わせ
- ・爆発のエネルギー供給
 - ニュートリノ対消滅によるジェット生成
 - GRBの中心エンジン
- 観測可能性
 - SNR