

超新星とニュートリノ: 爆発、元素合成、SRN検出

中村航

(国立天文台)

共同研究者:川越至桜、茂山俊和、吉田敬(東京大学)

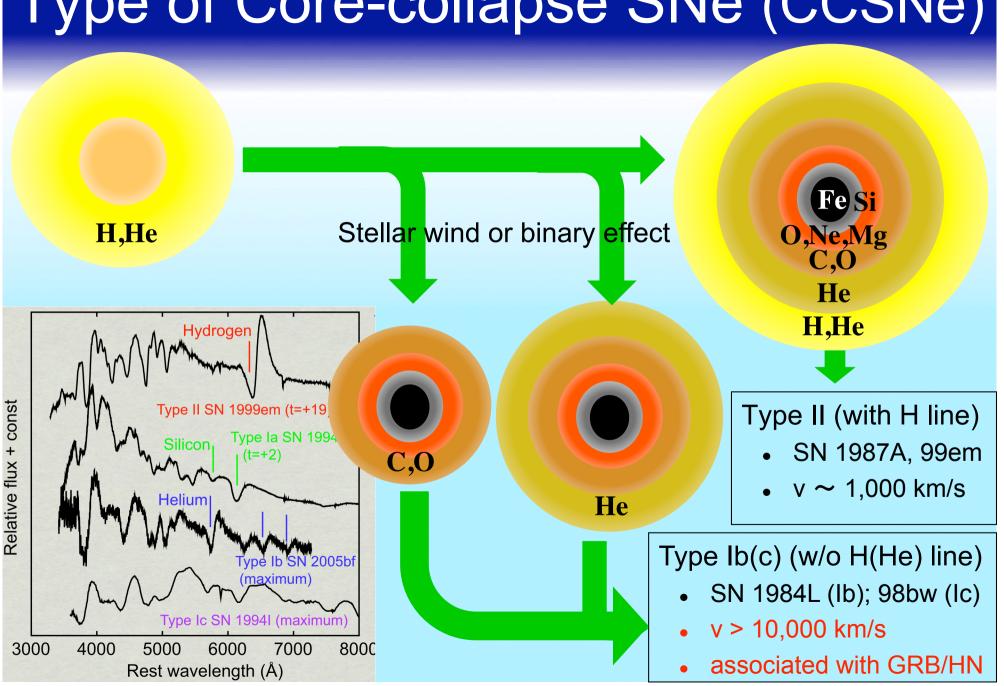
梶野 敏貴、西村信哉(国立天文台)

鈴木重太郎 (総合研究大学院大学)

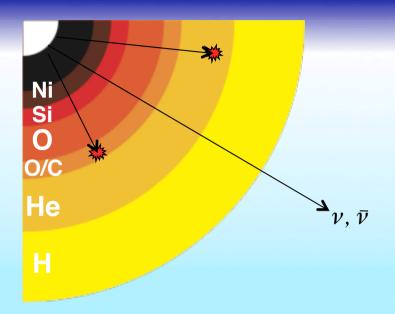
G. J. Mathews (Univ. of Notre Dame)

第2回「クォークカ学・原子核構造に基づく爆発的天体現象と元素合成」研究会

June 1st 2010


Outline

- ニュートリノ元素合成
 - 重力崩壊型超新星(Ⅱ, Ib, Ic型)
 - ニュートリノ元素合成プロセス(Li, B)(Nakamura+ 04; 06; 10, in prep.)
- ジェット状爆発の数値シミュレーション
 - コラプサーモデル
 - ニュートリノ対消滅によるジェット生成 (Harikae+ 09; 10)
- ニュートリノ背景放射 (Suzuki+ 10, in prep.)


Outline

- ニュートリノ元素合成
 - 重力崩壊型超新星(Ⅱ, Ib, Ic型)
 - ニュートリノ元素合成プロセス(Li, B)(Nakamura+ 04; 06; 10, in prep.)
- ジェット状爆発の数値シミュレーション
 - コラプサーモデル
 - ニュートリノ対消滅によるジェット生成 (Harikae+ 09; 10)
- ニュートリノ背景放射 (Suzuki+ 10, in prep.)

Type of Core-collapse SNe (CCSNe)

Neutrino-induced Nucleosynthesis

- Huge number of neutrinos (>10⁵⁸!)
- v_e , \overline{v}_e , $v_{\mu\tau} = (v_{\mu}, v_{\tau}, \overline{v}_{\mu}, \overline{v}_{\tau})$ $\langle \varepsilon_{ve} \rangle < \langle \varepsilon_{\overline{v}e} \rangle < \langle \varepsilon_{v\mu\tau} \rangle$
- Some interact with materials and induce nucleosynthesis
 - => The ν -process (Woosley+ 1990)
- ⁷Li in He layer & ¹¹B in C layer

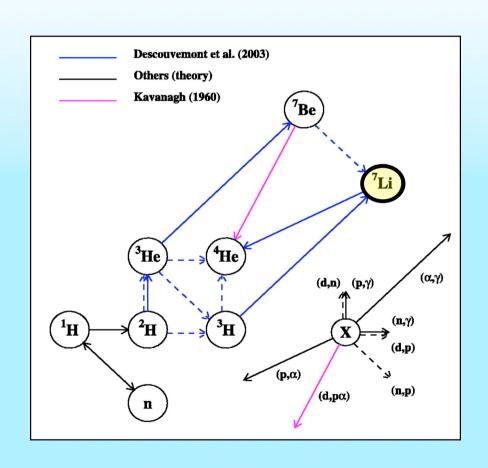
> The ν -process

Neutral current reaction:

$$(Z, A) + v \rightarrow (Z-1, A-1) + v' + p$$

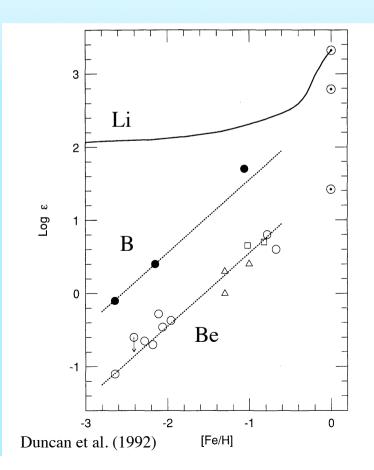
 $(Z, A) + v \rightarrow (Z, A-1) + v' + n$

Charged current reaction:


$$(Z, A) + v_e \rightarrow (Z+1, A) + e^-$$

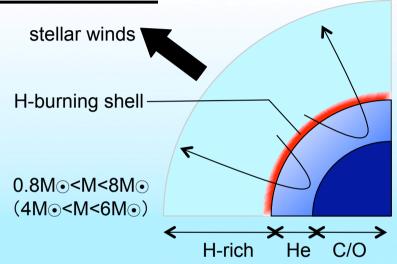
 $(Z, A) + \overline{v}_e \rightarrow (Z-1, A) + e^+$

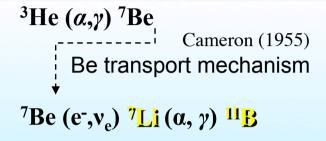
Boron production


¹²C(v, v'n)¹¹C, ¹²C(v, v'p)¹¹B
¹²C(v_e, e⁻p)¹¹C, ¹²C(
$$\overline{v}_e$$
, e⁺n)¹¹B
 \downarrow
¹¹B in 20 min.

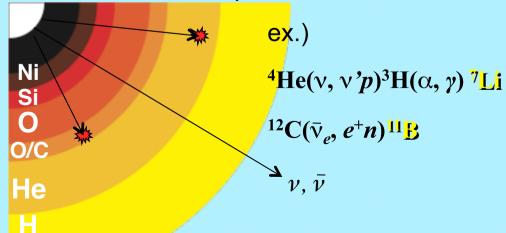
Production Sites of 6,7Li, 9Be, 10,11B

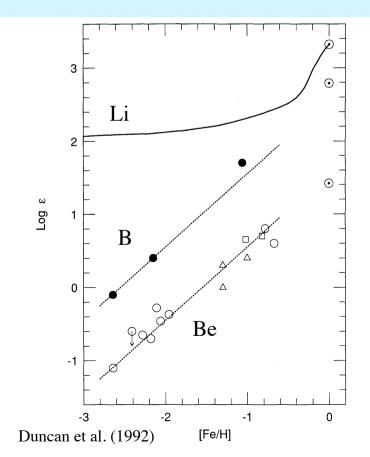
Big Bang Nucleosynthesis (BBN)




Universal ⁷Li
 (Spite plateau)

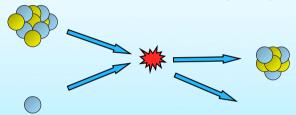
Production Sites of ^{6,7}Li, ⁹Be, ^{10,11}B


> AGB stars

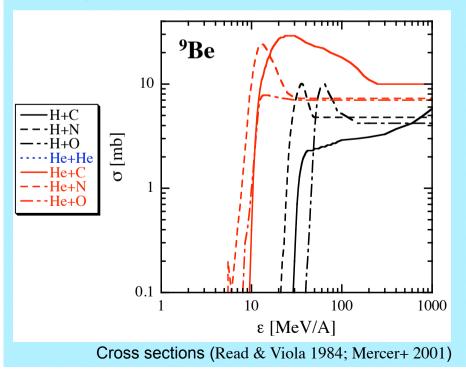


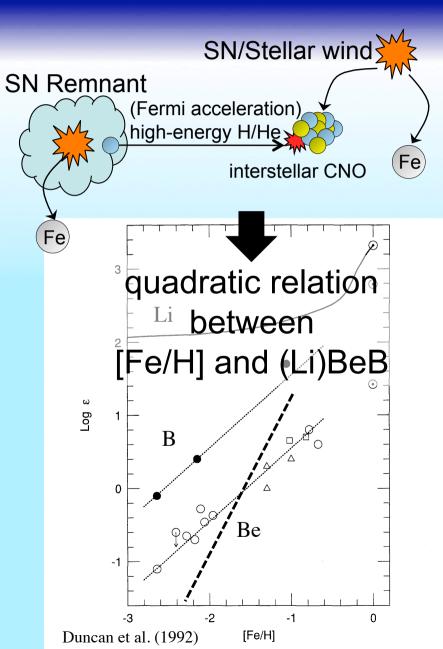
Core-collapse SNe

the neutrino-process

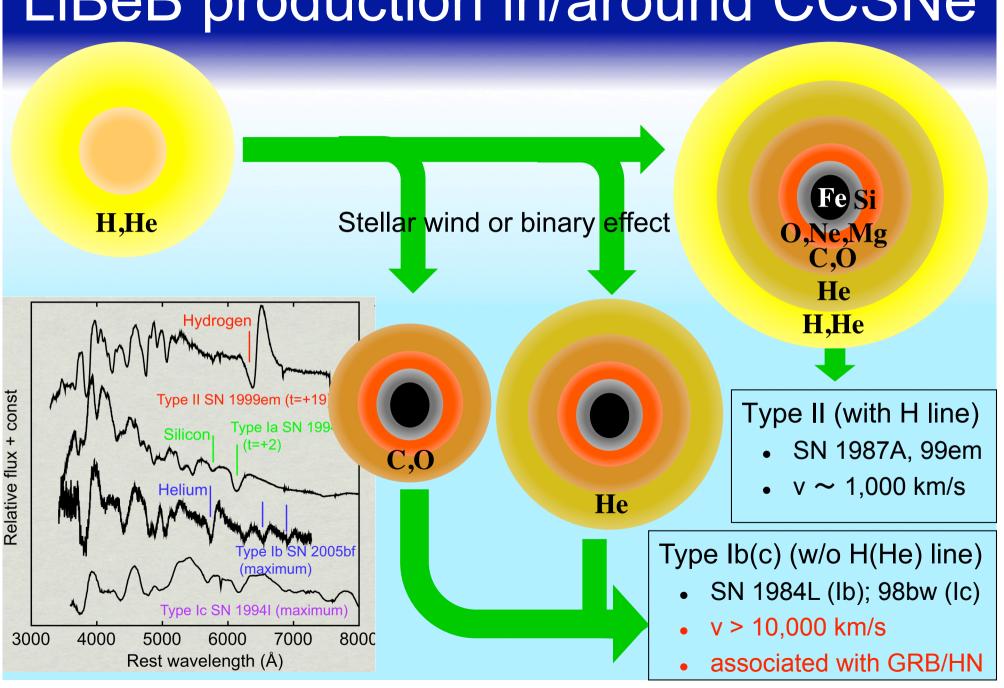


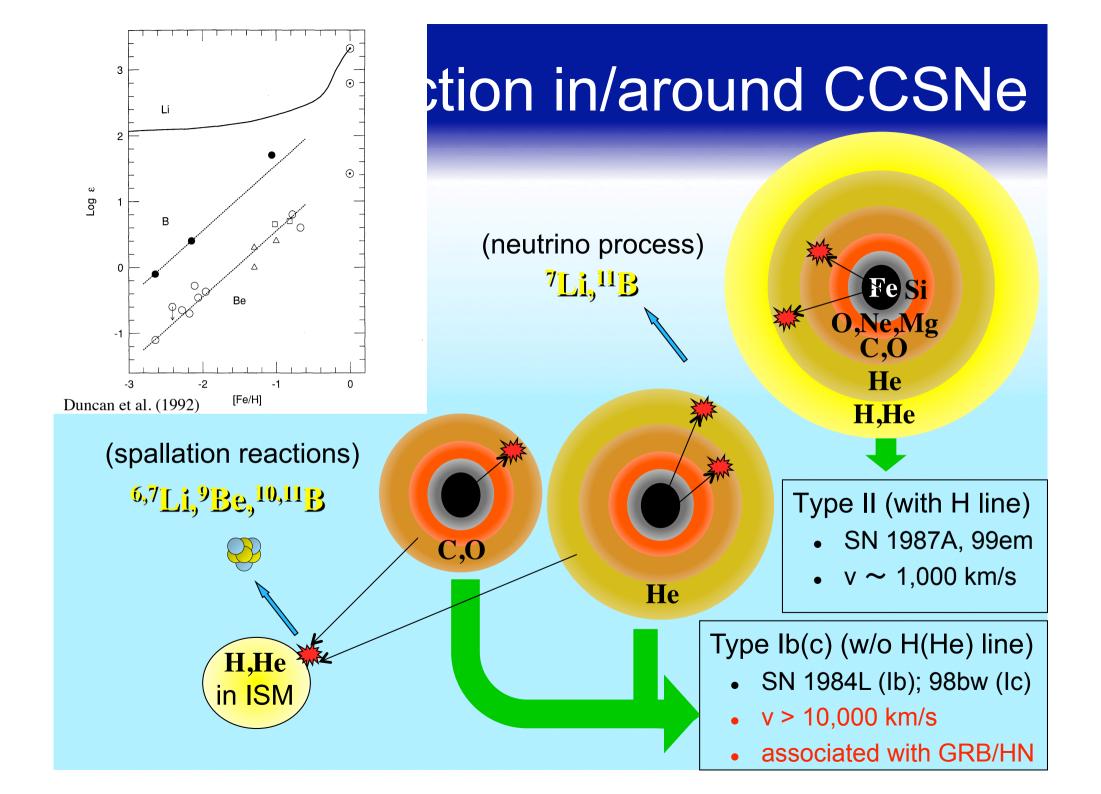
Production Sites of 6,7Li, 9Be, 10,11B


Cosmic-ray (CR) interactions


Spallation reactions

$$H,He+C,N,O \rightarrow 6.7$$
 Li, ${}^{9}Be$, ${}^{10,11}B+$ fragiles

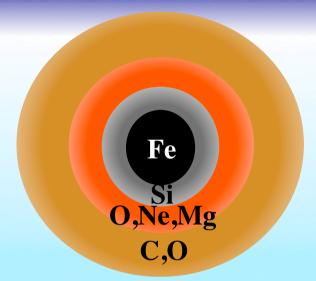


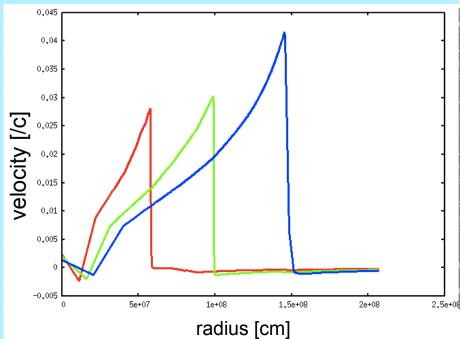

• ε > 5 MeV/nucleon

LiBeB production in/around CCSNe

Calculations: SN Ic Explosion

- Progenitor model:
 - SN 1998bw model (Nakamura+ 01) WR type (C/O) star $M=15M\odot$, $E_{\rm ex}=3\times10^{52}$ erg
- Numerical code:
 - 1-dimensional hydrodynamic code
 - effects of special relativity


(KN & Shigeyama 2004)


- Equations:
 - Relativistic hydrodynamic eq.

$$\partial_{\mu} (\rho v^{\mu}) = 0$$
$$\partial_{\mu} T^{\nu\mu} = 0$$

- EOS

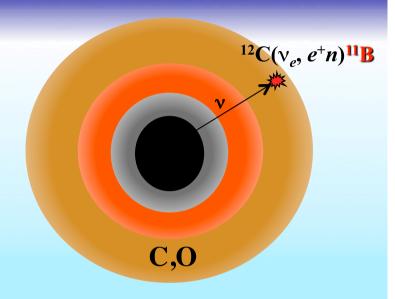
$$p = \frac{a}{3}T^4 + \frac{k\rho T}{\mu m_H}$$

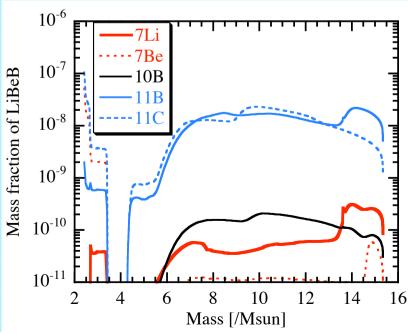
Calculations: the v-process

◆ Neutrino luminosity (Woosley+ 90):

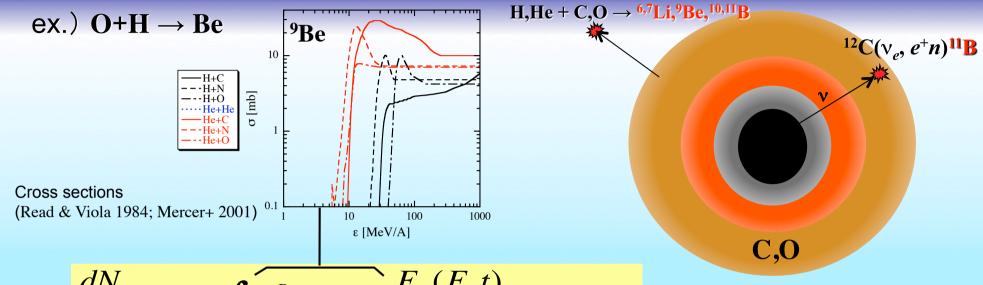
$$L_{vi}(t) \propto \frac{E_{v}}{\tau_{v}} \exp(-\frac{t - r/c}{\tau_{v}})$$

$$v_{i} : v_{e\mu\tau}, \overline{v}_{e\mu\tau}$$


- decay time: $\tau_v = 3 \text{ s}$
- total neutrino energy: $E_v = 3 \times 10^{53}$ ergs
- Energy spectra: Fermi-Dirac distribution


$$(kTve, kT\overline{v}e, kTv\mu\tau) =$$

$$(3.2, 5, 6) \text{ MeV} \leftarrow \text{normal } Tv\mu\tau$$

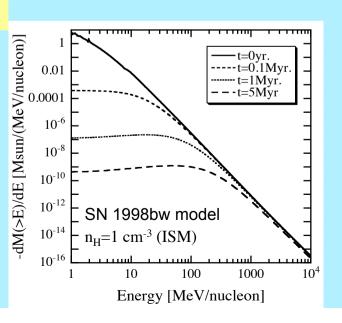

$$(3.2, 5, 8) \text{ MeV} \leftarrow \text{high } Tv\mu\tau$$

 Using nuclear reaction network consisting of 291 species of nuclei

Calculations: Spallation Reactions

 $\frac{dN_{Be}}{dt} = n_H \int \widehat{\sigma^{Be}}_{O,H}(E) \underbrace{\frac{F_O(E,t)}{A_O m_H}}_{P_O(E,t)} v_O(E) dE$

number density of target (H) in ISM

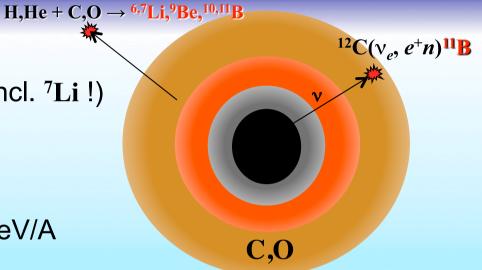

number of ejecta (O) with energy $E \sim E + dE$ at time t

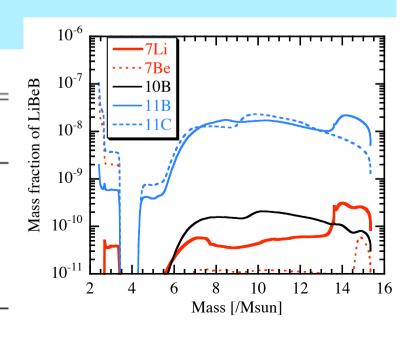
Transport equation

$$\frac{\partial F_i(E,t)}{\partial t} = \frac{\partial [\omega_i(E)F_i(E,t)]}{\partial E} - \frac{F_i(E,t)}{\Lambda} \rho v_i(E)$$

 ω_i : energy loss rate (ionization)

 Λ : loss length (spallation & escape)

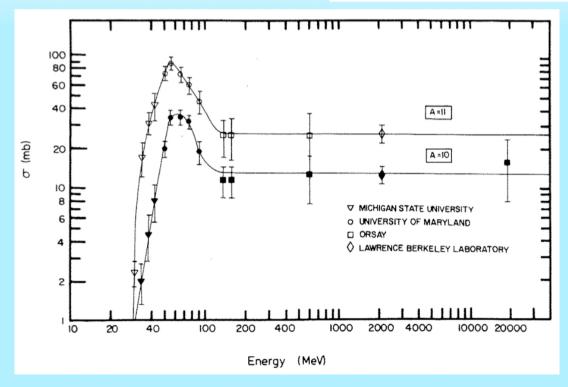



Results

- LiBeB from the ν-process
 - ¹¹B production in C-rich layers
 - ... and in the innermost region (incl. ⁷Li!)
 - more \mathbf{LiBeB} in high $T_{\mathbf{V_{u\tau}}}$ model
- LiBeB from spallations
 - 0.04M \odot of ejecta attain ε > 10 MeV/A
 - plenty of LiBeB
 - predominantly from O spallation

LIGHT ELEMENT YIELDS FROM SN IC MODEL

Species	Normal $T_{\nu_{\mu,\tau}}$ (M_{\odot})	High $T_{\nu_{\mu,\tau}}$ (M_{\odot})	Spallation (M_{\odot})
⁶ Li ⁷ Li ⁹ Be ¹⁰ B ¹¹ B	1.67×10^{-11} 7.41×10^{-9} 4.49×10^{-11} 1.29×10^{-9} 2.69×10^{-7}	5.91×10^{-11} 2.50×10^{-8} 1.08×10^{-10} 2.78×10^{-9} 5.46×10^{-7}	2.38×10^{-7} 3.31×10^{-7} 9.99×10^{-8} 4.38×10^{-7} 1.34×10^{-6}



Results - compared with observation

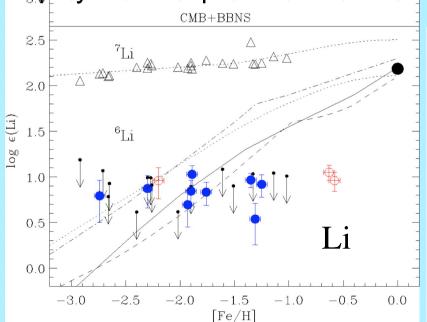
- B isotope ratios (11B/10B)
 - -4.05 ± 0.05 (meteorites)
 - ∼3 (spallations)
 - \sim 200 (the v-process)
 - 3.66-4.28 (spallation+v)

LIGHT ELEMENT YIELDS FROM SN IC MODEL

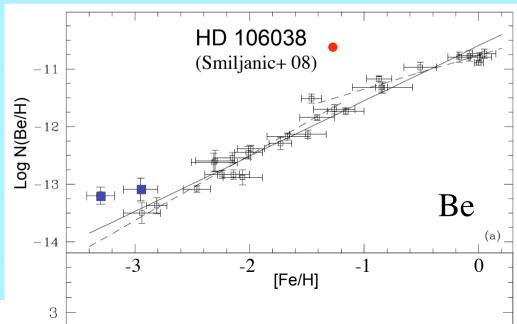
Species	Normal $T_{\nu_{\mu,\tau}}$ (M_{\odot})	High $T_{\nu_{\mu,\tau}}$ (M_{\odot})	Spallation (M_{\odot})
$^{6}{ m Li}$ $^{7}{ m Li}$ $^{9}{ m Be}$ $^{10}{ m B}$ $^{11}{ m B}$	$\begin{array}{c} 1.67 \times 10^{-11} \\ 7.41 \times 10^{-9} \\ 4.49 \times 10^{-11} \\ 1.29 \times 10^{-9} \\ 2.69 \times 10^{-7} \end{array}$	$\begin{array}{c} 5.91 \times 10^{-11} \\ 2.50 \times 10^{-8} \\ 1.08 \times 10^{-10} \\ 2.78 \times 10^{-9} \\ 5.46 \times 10^{-7} \end{array}$	2.38×10^{-7} 3.31×10^{-7} 9.99×10^{-8} 4.38×10^{-7} 1.34×10^{-6}

Cross sections of p+O reaction (Read & Viola 1984)

Results - compared with observation

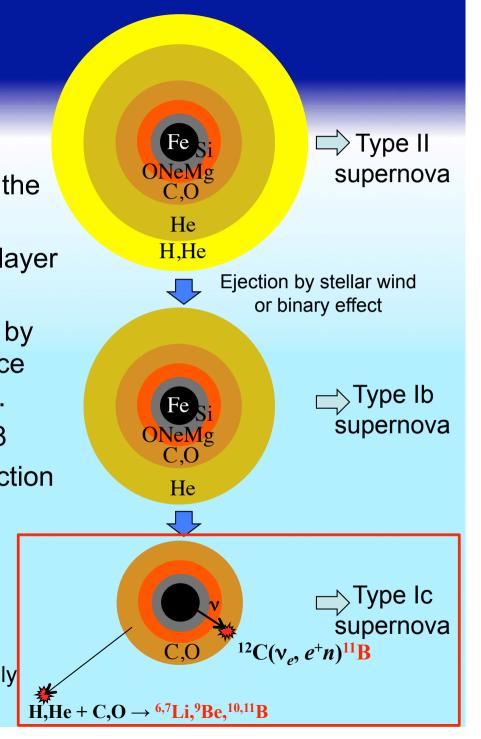

- B isotope ratios (11B/10B)
 - -4.05 ± 0.05 (meteorites)
 - ∼3 (spallations)
 - \sim 200 (the v-process)
 - 3.66-4.28 (spallation+v)

LIGHT ELEMENT YIELDS FROM SN IC MODEL


Species	Normal $T_{\nu_{\mu,\tau}}$ (M_{\odot})	High $T_{\nu_{\mu,\tau}}$ (M_{\odot})	Spallation (M_{\odot})
⁶ Li ⁷ Li ⁹ Be ¹⁰ B	1.67×10^{-11} 7.41×10^{-9} 4.49×10^{-11} 1.29×10^{-9} 2.69×10^{-7}	$\begin{array}{c} 5.91\times10^{-11} \\ 2.50\times10^{-8} \\ 1.08\times10^{-10} \\ 2.78\times10^{-9} \\ 5.46\times10^{-7} \end{array}$	2.38×10^{-7} 3.31×10^{-7} 9.99×10^{-8} 4.38×10^{-7} 1.34×10^{-6}

- Its contribution is ... low (
- SNe Ic might

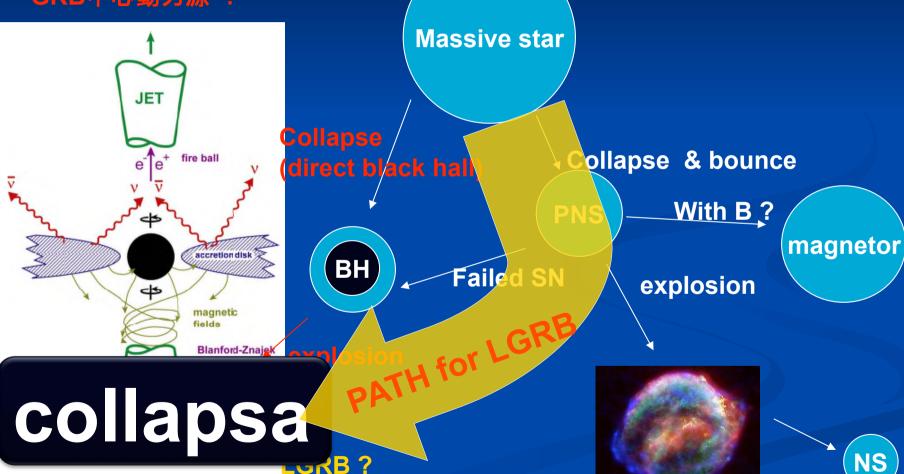
- play some important role in low Z



- make some anomalous stars

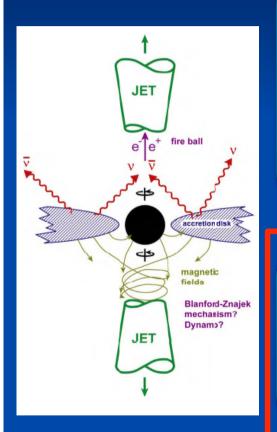
Summary - 1.

- SNe Ic: a class of CCSNe
- We investigated **LiBeB** production via the v-process and spallations in SNe Ic.
- The v-process synthesizes ¹¹B in C/O layer (& innermost layer).
- The outermost C/O nuclei accelerated by explosion interact with ISM and produce ^{6,7}Li, ⁹Be, ^{10,11}B via spallation reactions.
- ${}^{11}B/{}^{10}B$ (v-process +spallations) = 3.67-4.28
- Dense CSM → localized LiBeB production and star formation → anomalous star
- How about SNe lb?
 - the v-process produces ⁷Li in the He layer
 - fusion reaction of α-particles produces Li isotopes
 - nitrogen may be included if low-Z and rapidly rotating, leading to rich LiBeB production



Outline

- ニュートリノ元素合成
 - 重力崩壞型超新星(Ⅱ, Ib, Ic型)
 - ニュートリノ元素合成プロセス(Li, B)(Nakamura+ 04; 06; 10, in prep.)
- ジェット状爆発の数値シミュレーション
 - コラプサーモデル
 - ニュートリノ対消滅によるジェット生成 (Harikae+ 09; 10)
- ニュートリノ背景放射 (Suzuki+ 10, in prep.)


Intro Path for Collapsar

GRB中心動力源 ?

r

How to produce outflow?

MHD:

Proga et al. (2003); Mizuno et al. (2006); Fujimoto et al. (2006);

Nagataki et al. (2007); Nagataki

(2009); Harikae et al(2009 a)

問題点: GRBを説明できそうと言われているモデルは、磁場が強すぎる or 回転が速すぎる。

Neutrino (pair annihilation):

Ruffert et al. (1997); Ruffert & Janka (1998), Asano & Fukunaga (200,2001), Nagataki et al. (2007), Birkl et al(2008)

問題点:アウトフローすら出ない。

ニュートリノ起源の方が 良く分かってない

Intro Our study

Harikae et al. 2009b (submitted to ApJ) Harikae et al. 2009c (submitted to ApJL)

主な特色

- ◆ ニュートリノ対消滅を計算する。
 - ◆ Reaction rate が密度によらないため、低密度高エネルギーになる。
 - ◆ 最重要だが、ほぼ全ての研究で無視されてきた(計算が難しい)。
- ◆ 大質量星の重力崩壊後~10 sの進化を追う。
 - ◆ 多くの研究は
 - ◆ 重力崩壊後 ~ 1 s の進化しか計算しない。(LGRB ~30 s)
 - ◆ 初期条件として平衡状態にあるディスクをおく。 のどちらか。

ニュートリノ対消滅による加熱

Harikae et al. 2009b (submitte

◆ ニュートリノ対消滅による加熱率

$$\frac{dq_{\nu\bar{\nu}}^{+}(\boldsymbol{r})}{dtdV} = \iint f_{\nu}(p_{\nu},\boldsymbol{r})f_{\bar{\nu}}(p_{\bar{\nu}},\boldsymbol{r})\sigma|\boldsymbol{v}_{\nu}-\boldsymbol{v}_{\bar{\nu}}|(\epsilon_{\nu}+\epsilon_{\bar{\nu}})d^{3}\boldsymbol{p}_{\nu}d^{3}\boldsymbol{p}_{\bar{\nu}}$$

◆ 断面積

$$\sigma = 2c^2 K G_{\rm F}^2(\boldsymbol{p}_{\nu} \cdot \boldsymbol{p}_{\bar{\nu}})$$

◆ 定数

$$K(\nu_e, \bar{\nu}_e) = \frac{1 + 4\sin^2\theta_W + 8\sin^4\theta_W}{6\pi},$$
$$K(\nu_\mu, \bar{\nu}_\mu) = K(\nu_\tau, \bar{\nu}_\tau) = \frac{1 - 4\sin^2\theta_W + 8\sin^4\theta_W}{6\pi}.$$

電子タイプの方か 約5倍 対消滅しやすい

反応率の特殊相対論的表式

Harikae et al. 2009b (submitte

$$\frac{dq_{\nu\bar{\nu}}^{+}(\boldsymbol{r})}{dtdV} = \iint f_{\nu}(p_{\nu},\boldsymbol{r})f_{\bar{\nu}}(p_{\bar{\nu}},\boldsymbol{r})\sigma|\boldsymbol{v}_{\nu}-\boldsymbol{v}_{\bar{\nu}}|(\epsilon_{\nu}+\epsilon_{\bar{\nu}})d^{3}\boldsymbol{p}_{\nu}d^{3}\boldsymbol{p}_{\bar{\nu}}$$

- ◆ 上式のf、ε、p等はlab frameで測られた量。
- ◆ しかし、一般にf、ε、pは熱力学量から求められるため、rest frameで定義する方が楽。
- ◆ 式変形して、以下のローレンツ変換を代入

$$dt dV = dt_0 dV_0$$

$$d\epsilon = \frac{\epsilon}{\epsilon_0} d\epsilon_0$$

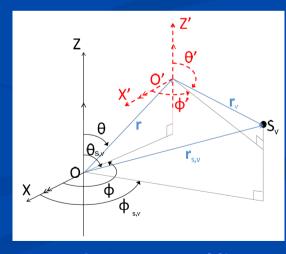
$$d\Omega = \frac{\epsilon_0^2}{\epsilon^2} d\Omega_0$$

$$\epsilon = \gamma (1 + \beta \mu_0) \epsilon_0$$

$$= \epsilon_0 / [\gamma (1 - \beta \mu)]$$

反応率の特殊相対論的表式

Harikae et al. 2009b (submitte


◆ ニュートリノ対消滅の特殊相対論的加熱率

$$\frac{dq_{\nu\bar{\nu}}^{+}(\boldsymbol{r})}{dtdV} = 2cKG_{F}^{2} \int d\theta_{\nu}d\phi_{\nu}d\theta_{\bar{\nu}}d\phi_{\bar{\nu}}
\times [\xi_{\nu}^{5}(\boldsymbol{r},\Omega_{\nu})\xi_{\bar{\nu}}^{4}(\boldsymbol{r},\Omega_{\bar{\nu}})E_{\nu,0}(\boldsymbol{r},\Omega_{\nu})N_{\bar{\nu},0}(\boldsymbol{r},\Omega_{\bar{\nu}})
+\xi_{\nu}^{4}(\boldsymbol{r},\Omega_{\nu})\xi_{\bar{\nu}}^{5}(\boldsymbol{r},\Omega_{\bar{\nu}})N_{\nu,0}(\boldsymbol{r},\Omega_{\nu})E_{\bar{\nu},0}(\boldsymbol{r},\Omega_{\bar{\nu}})]
\times [1 - \sin\theta_{\nu}\sin\theta_{\bar{\nu}}\cos(\varphi_{\nu} - \varphi_{\bar{\nu}}) - \cos\theta_{\nu}\cos\theta_{\bar{\nu}}]^{2}\sin\theta_{\nu}\sin\theta_{\bar{\nu}}$$

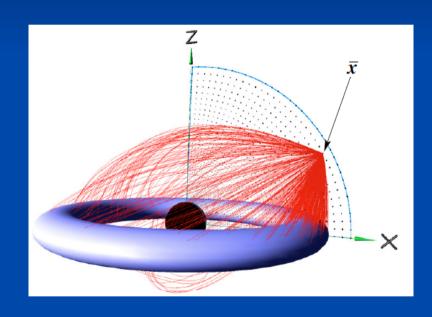
$$\xi_{\nu}(\mathbf{r}, \Omega_{\nu}) = \epsilon_{\nu}/\epsilon_{\nu,0}$$
$$= 1/[\gamma_{\nu}(1 - \mu_{\nu}\beta_{\nu})]$$

$$E_{\nu,0}(\boldsymbol{r},\Omega_{\nu}) = \int \epsilon_{\nu,0}^{4} f_{\nu,0}(\boldsymbol{r}_{\nu,0},\boldsymbol{p}_{\nu,0}) d\epsilon_{\nu,0},$$

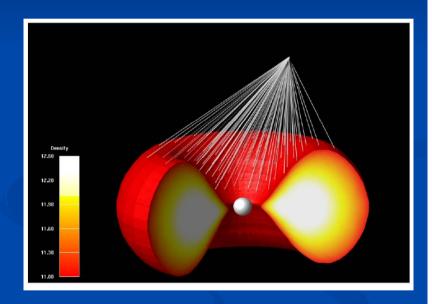
$$N_{\nu,0}(\boldsymbol{r},\Omega_{\nu}) = \int \epsilon_{\nu,0}^{3} f_{\nu,0}(\boldsymbol{r}_{\nu,0},\boldsymbol{p}_{\nu,0}) d\epsilon_{\nu,0},$$

座標系の模式図

ニュートリノ対消滅の計算手法 1/2

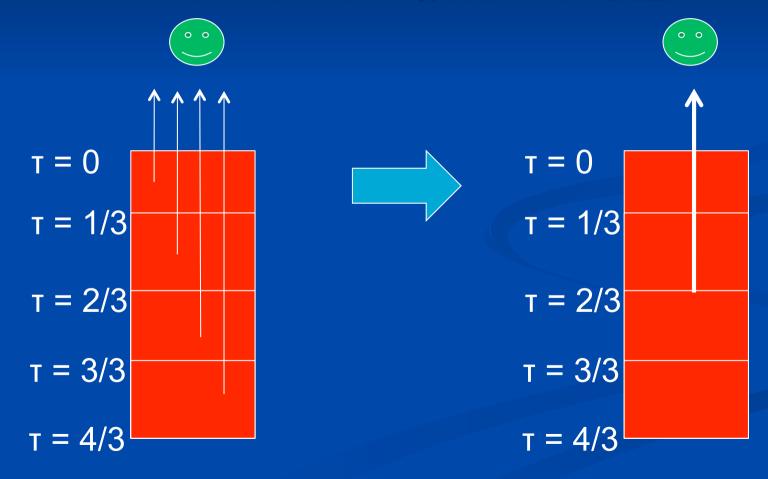

Harikae et al. 2009b (submitte


- ◆ ニュートリノ加熱をtime-dependentで計算するための手法
 - 1. 一般相対論的効果(bending etc) を無視
 - 2. ニュートリノ球からの電子型vの輻射のみ考慮
 - 3. 分布関数をFermi-Dirac分布で近似
 - 4. 積分変数を変数変換
 - 5. 対消滅は50stepに一回だけ計算


ニュートリノ対消滅の計算手法 1/2-1

Harikae et al. 2009b (submitte

→ 一般相対論的効果を無視



Birkl et al.(2008)

ニュートリノ消滅の計算手法 1/2-2

Harikae et al. 2009b (submitte

◆ ニュートリノ球からの輻射のみ考慮

ニュートリノ消滅の計算手法 1/2 - 3

Harikae et al. 2009b (submitte

- ◆ 分布関数をFermi-Dirac分布で近似
 - ◆ 温度Tはτ=2/3となる位置のものを用いる。

$$f_{\nu}(\mathbf{r}_{\nu,0}, \mathbf{p}_{\nu,0}) = \frac{1}{(hc)^3} \frac{dn_0}{d\epsilon_0 d\Omega_0 dt_0 dV_0}$$
$$= \frac{1}{(hc)^3} \frac{1}{\exp(\epsilon_{\nu,0}/kT_{\nu,0}) + 1}$$

ニュートリノ消滅の計算手法 1/2 - 4

Harikae et al. 2009b (submitte

$$\frac{dq_{\nu\bar{\nu}}^{+}(\mathbf{r})}{dtdV} = 2cKG_{F}^{2} \int d\theta_{\nu}d\phi_{\nu}d\theta_{\bar{\nu}}d\phi_{\bar{\nu}}
\times [\xi_{\nu}^{5}(\mathbf{r},\Omega_{\nu})\xi_{\bar{\nu}}^{4}(\mathbf{r},\Omega_{\bar{\nu}})E_{\nu,0}(\mathbf{r},\Omega_{\nu})N_{\bar{\nu},0}(\mathbf{r},\Omega_{\bar{\nu}})
+ \xi_{\nu}^{4}(\mathbf{r},\Omega_{\nu})\xi_{\bar{\nu}}^{5}(\mathbf{r},\Omega_{\bar{\nu}})N_{\nu,0}(\mathbf{r},\Omega_{\nu})E_{\bar{\nu},0}(\mathbf{r},\Omega_{\bar{\nu}})]
\times [1 - \sin\theta_{\nu}\sin\theta_{\bar{\nu}}\cos(\varphi_{\nu} - \varphi_{\bar{\nu}}) - \cos\theta_{\nu}\cos\theta_{\bar{\nu}}]^{2}\sin\theta_{\nu}\sin\theta_{\bar{\nu}}$$

- ◆ この積分の意味:
 - 「対消滅を起こす位置で、角度積分しなさい」
- ◆ これはnumerical cost を増やす。

ニュートリノ消滅の計算手法 1/2 - 4

Harikae et al. 2009b (submitte

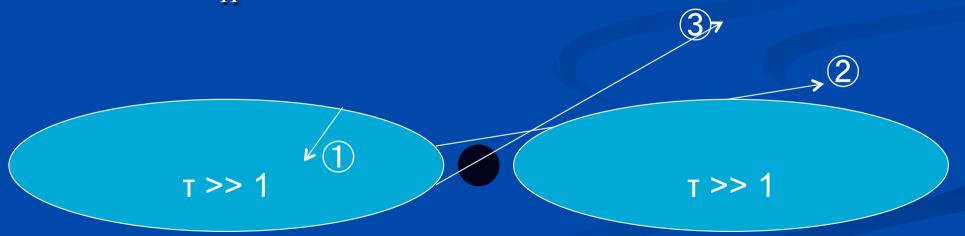
積分変数を変数変換

$$d\Omega_{\nu} = J_{r\mu}(\mu_{\nu}, \phi_{\nu}, r_{s,\nu}, \mu_{s,\nu}) \Big|_{\phi_{s,\nu} = \phi_{\mathrm{sph},\nu}} dr_{s,\nu} d\mu_{s,\nu} + J_{\mu\phi}(\mu_{\nu}, \phi_{\nu}, \mu_{s,\nu}, \phi_{s,\nu}) \Big|_{r_{s,\nu} = r_{\mathrm{sph},\nu}} d\mu_{s,\nu} d\phi_{s,\nu} + J_{\phi r}(\mu_{\nu}, \phi_{\nu}, \phi_{s,\nu}, r_{s,\nu}) \Big|_{\mu_{s,\nu} = \mu_{\mathrm{sph},\nu}} d\phi_{s,\nu} dr_{s,\nu},$$

積分領域をニュートリノ球に限定することで、 最も効率的に計算できる

積分変数とnumerical gridを一対一に対応させた

ニュートリノ消滅の計算手法 1/2-5


Harikae et al. 2009b (submitte

- ◆ 対消滅は50stepに一回だけ計算
 - Time step $\Delta t \sim 100 \mu s$ に対して $t_{var} \sim 10 ms$ なので、十分。
 - ◆ 過去の例: Nagataki et al(2007): 100 step に一回。

ニュートリノ対消滅の計算手法 2/2

Harikae et al. 2009b (submitte

- ◆ Ray-Traceによって以下のtrajectoryを無視。
 - 1. ニュートリノ球の内側に向かって放射される。
 - 2. Optically thick regionを通過する。
 - 3. $r < r_H$ になる。

Numerical methods HD simulation

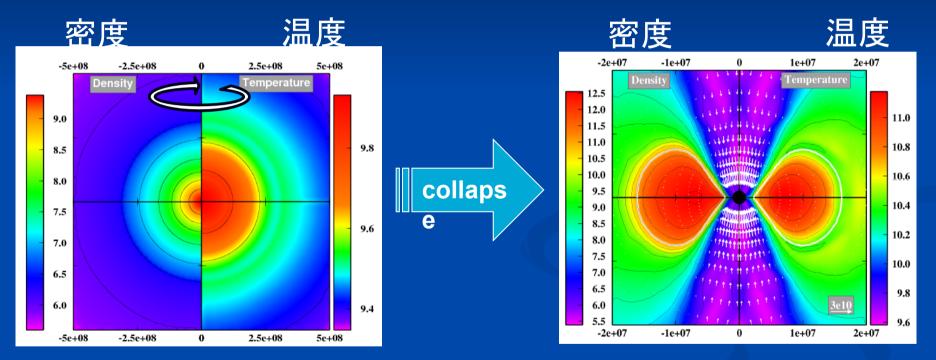
Harikae et al. 2009b (submitte Harikae et al. 2009c (submitte

- ◆ HD simulation (<u>ニュートリノ加熱(対消滅)を含める</u>)
 - ◆ Special relativistic MHD code (Takiwaki et al 2009)
 - Neutrino heating is calculated by ray-tracing in flat timespace.
 - ◆ Realistic EOS of Shen et al (1998) is implemented.
 - ◆ Initial data is taken from 35OC model (Woosley&Heger 2006)
 - Calculated by 256 nodes@ XT4
- ◆ 先行研究との違い:ニュートリノ対消滅を入れたアウトフローが出たら、Neutrino-driven

2 step for simulation

対消滅計算は非常に重いので、数値計算を二段階に分ける。

Step 1:対消滅を無視 & post-process で評価

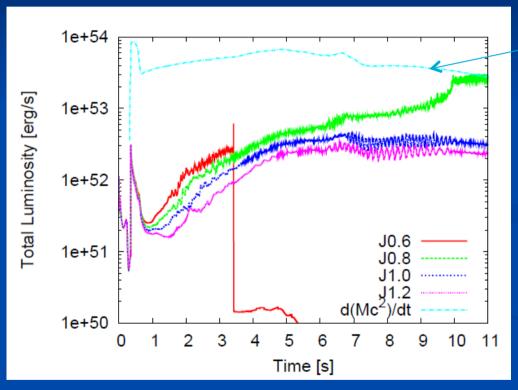

評価方法 : $\tau_{\text{dyn}}/\tau_{\text{heat}} > 1$ or not $\tau_{\text{dyn}} \equiv \sqrt{3\pi}/\tau_{\text{heat}} \equiv \rho/\tau_{\text{heat}}$

⇒ 対消滅が効く時刻t₀を求める

Step 2:時刻t₀から対消滅を入れて計算

Disk formation

Harikae et al. 2009b (submitte



Fe core ~ 3000km

重力崩壊後、BH周りにディスク形成。

Neutrino luminosity

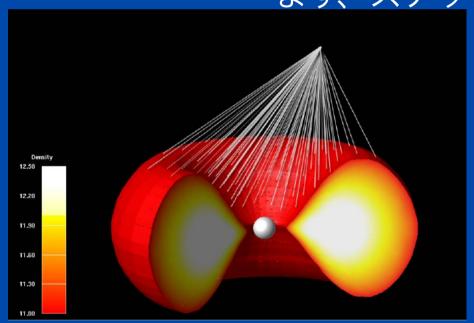
Harikae et al. 2009c (submitte

エディントン光度

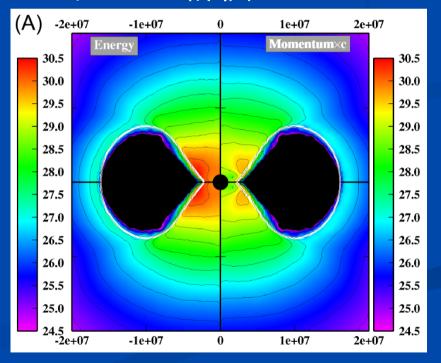
最もニュートリノを放するモデルに着目。

ニュートリノ光度はエディントン光度 $L_{\rm E}\sim 10^{53}{
m erg/s}$ に近づく

(at $\sim 10 \text{ s in model with } \mathbf{j_{ms}} < \mathbf{j} < \mathbf{j_{mb}}$)

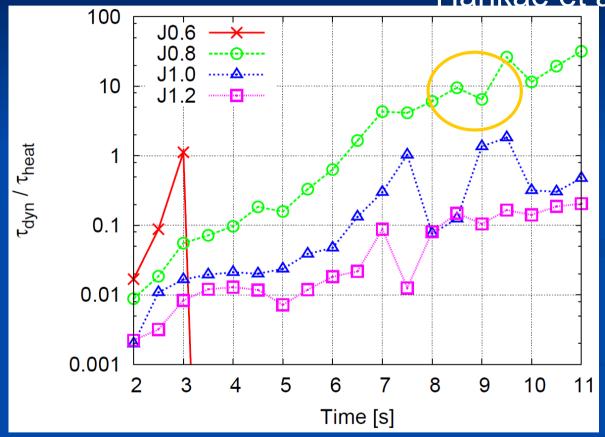

安定軌道を描くリミット 不安定軌道を描くリミット

Pair annihilation


Harikae et al. 2009b (submitte

ニュートリノ対消滅による加熱

まず、スナップショットで評価


ニュートリノ対消滅のイメージ

ニュートリノによるエネルギー・運動

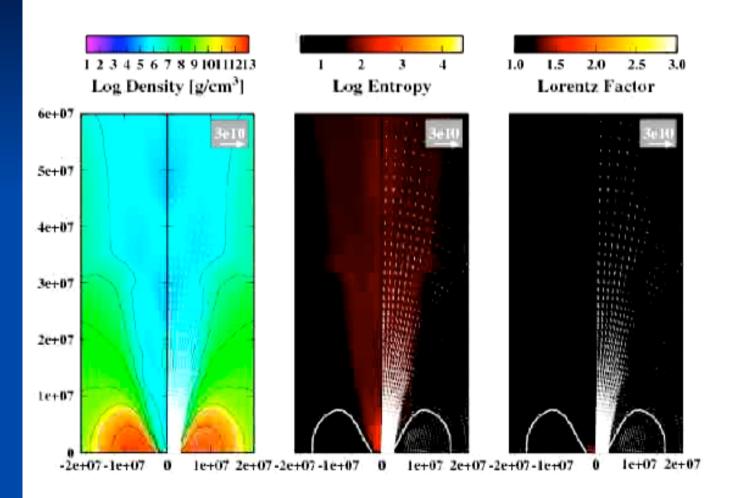
対消滅計算の開始時刻

Harikae et al. 2009c (submitte

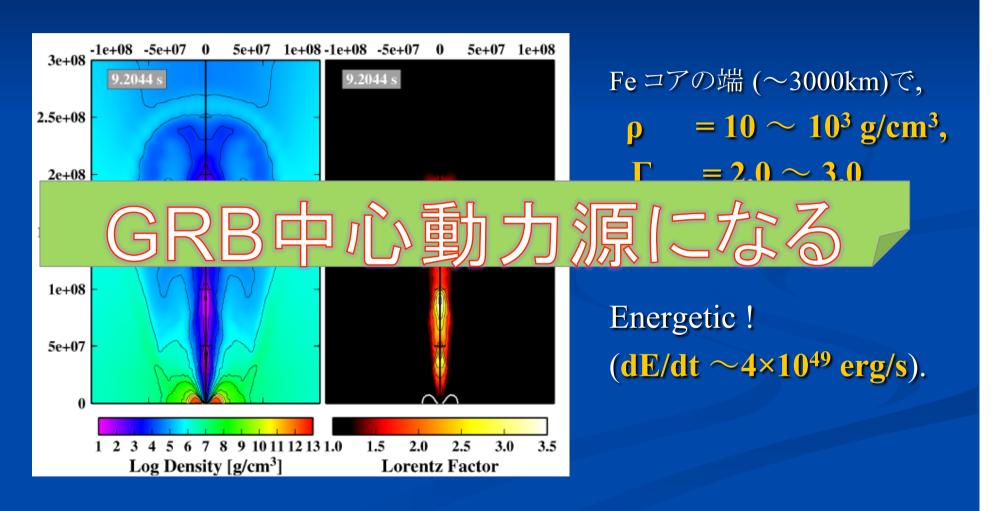
$$\tau_{\rm dyn} \equiv \sqrt{3\pi/16G\bar{\rho}}$$

$$\tau_{\rm heat} \equiv \rho |\Phi_{\rm tot}|/q^{+}$$

T_{dyn} >> T_{heat}, となった時刻 (9.0 s) から、対消滅を入れて再計算


Neutrino-driven outflow

Harikae et al. 2009c (submitte


ダイナミカルタイムスケールτ_{dyn}となる位置(色付きの)からアウトフロー形成

Movie

Properties of outflow

Harikae et al. 2009c, submitted

Outline

- ニュートリノ元素合成
 - 重力崩壞型超新星(Ⅱ, Ib, Ic型)
 - ニュートリノ元素合成プロセス(Li, B)(Nakamura+ 04; 06; 10, in prep.)
- ジェット状爆発の数値シミュレーション
 - コラプサーモデル
 - ニュートリノ対消滅によるジェット生成 (Harikae+ 09; 10)
- ニュートリノ背景放射

(Suzuki+ 10, in prep.)

1 導入

- 1) 重力崩壊型超新星
- •確率:~1回/100yr/galaxy
- 多量のニュートリノが発生

Supernova Relic Neutrinos (SRN)

•現状(10kton 級 検出装置): <数個/yr (Horiuchi et al.2009)
↓↑

Mton 級 検出装置+GdCl3: ~100/yr (反応:p+√e→e++n)

⇒新たな観測手段として期待

写真:東京大学宇宙線研究所 神岡宇宙素粒子研究施設 HPより

SRN検出率を決定する要素:

- (1):超新星発生率(前駆天体の質量(M)の関数)
- (2):宇宙膨張(宇宙論パラメータΩ)
- (3):超新星爆発の際のニュートリノの発生数
- (4):星形成率(赤方偏移(Z)の関数)
- (5):超新星爆発の際のニュートリノ温度
- (6):ニュートリノ振動パラメータ・ニュートリノ質量階層
 - ※: 超新星前駆天体の質量分布のSRNへの影響
 - ※: ガンマ線バーストからのSRNへの寄与

導入つづき

2)ニュートリノ温度 (T_{ν}) :

ニュートリノ温度(T_ν)不定性あり→観測量への影響大

(先行研究:Τ_{ν μ},Τ_{ν π}=4.0MeV~8.0MeV)

超新星元素合成からTνを制限→SRN検出率をより精密に予測

Tν e,Tν e - 超新星爆発 r-過程

 $T\nu_{\mu,\tau}$ - $^{11}B/^{10}B$ 比率に関する銀河化学進化モデル

- ¹¹B/¹⁰B比率の観測値(隕石等)

2 手順

SRNO Number Flux

Eq.(3):Differential Number Flux of SRNs

(単位面積・単位エネルギー幅あたりSRN入射数)

- 1 (1):宇宙論モデル
 - (2):星形成率
 - (3):超新星発生率
 - (4):エネルギースペクトル
 - (5): ニュートリノ振動

$$XE' = (1+z)E$$

(1)
$$\frac{dz}{\sqrt{(1+\Omega_m z)(1+z)^2-\Omega_{\Lambda}(2z+z^2)}},$$

(2),(3)

Ando (2004)

星形成率(赤方偏移(Z)の関数)

$$\dot{\rho}_*(z) = \dot{\rho}_0 \left[(1+z)^{\alpha\eta} + \left(\frac{1+z}{B} \right)^{\beta\eta} + \left(\frac{1+z}{C} \right)^{\gamma\eta} \right]^{1/\eta}, \tag{1}$$

Horiuchi et al. (2009)

 $\rho_0: 1.04 \times 10^{-2}$

 ρ +: 2.08×10⁻²

 ρ -: 5.90×10⁻³

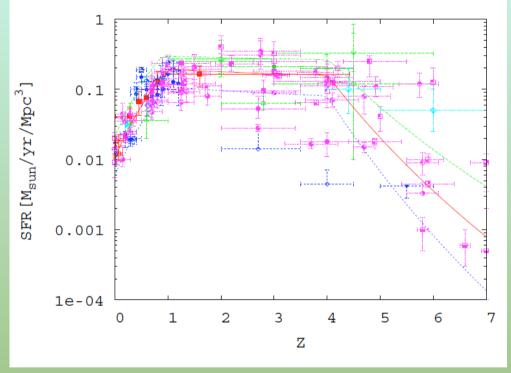
 $\alpha:4.22$

 β : -0.207

γ:-11.3

B:2.7×106

C:6.37


※1ダストの影響に対する 補正あり

※2:誤差棒が上限のみ または下限のみ:除外 (統計処理上の都合)

※3:誤差棒なし:同じ観 測手段・zの近い領域の Plotに準ずる

※4:誤差棒の上下または 左右の長さが異なる:長い ほうに合わせる

赤:infrared

青:optical

ピンク: ultra violet

水色: X-ray,γ-ray

緑:radio

Z

SRNのエネルギースペクトル

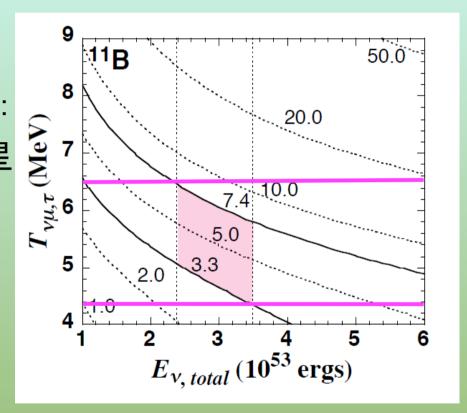
●本研究:

- ●Fermi-Dirac 分布を想定
- •ニュートリノ振動を考慮
- T v (新たに制限)
- •ην:今回発表では0
- ●右表:超新星数値実験から得られた計算結果(ニュートリノ温度・ 化学ポテンシャル等)
- ※1:化学ポテンシャル:取り扱い はまちまち
- ※2: 反応断面積の化学ポテンシャル依存性: ~10%(Yoshida et al., 2005)

dN_{ν}	$E_{\nu}^{total}/6$	x^2
dE_{ν}	$-\frac{7\pi^4/120}{7\pi^4/120}$	$exp(x-\eta)+1$
(Yo	shida et al. 2	$2005) \times = E \nu / T \nu$
`		$\underline{\qquad}$ X=L \mathcal{V} / \mathcal{V}

	モデル名称	Tve	Tve-	Tvx	ηve	ηve-	ηνχ	<e>or√<e^2></e^2></e>
1987	Bruenn	3.17	3.80	7.93				
1990	Myra&Burrows	3,49	4.12	7.60				<e>></e>
1998	Totani-0.3s	3.80	4.76	6.03	0	0	0	
1989b	Janka&Hillebrand	2.54	4.44	5.08	0	0	0	<e>></e>
	Apmodel1	4.13	4.76	5.71	2.8	3.4	1,1	
2003	-KRJ	3.80	4.44	4.44	1.4	2.7	0.3~1.6	<e></e>
	Apmodel2	4.13	5.07	5.40	1.7	3	0.8	
2003	-KRJ	4.13	4.76	5.07	2.1	3.2	0.8	<e>></e>
2003	Buras	4.48	5.24	5.33				
2001	Mezzakappa	5.08	6.03	7.60	ı	ı	ı	
2001	Liebendorfer	6.03	6.66	7.60				√ <e^2></e^2>
2003	Ando,Sato mean	3.49	5.08	6.98	-	-	-	<e></e>
2007	*Baker et al	4.13	4.89	4.98	-	-	-	

(Keil,Raffelt&Janka,2003より改変)


Τνμ, Τντの推定

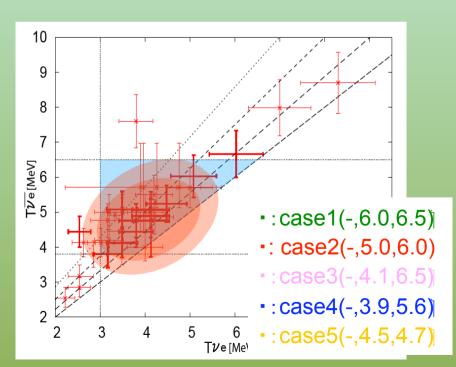
•等高線:11Bの存在量

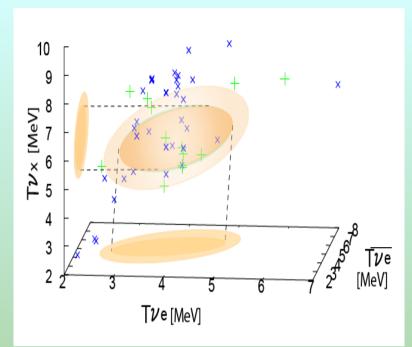
(単位:10-7 太陽質量)

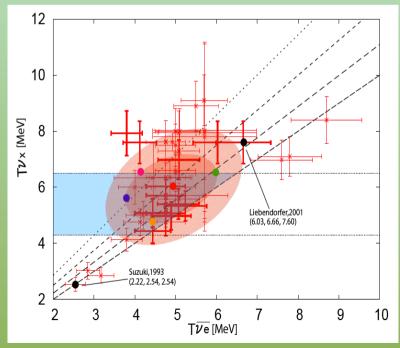
・ニュートリノのエネルギーの範囲: 超新星(1.4太陽質量の中性子星を残す)の重力的束縛エネルギー から推定

—:銀河化学進化モデルから 推定した¹¹B存在量の上限・下限

—: Τνμ,Τντ**の上限•**下限


 \Rightarrow 4.3MeV \leq Tv μ ,Tv τ \leq 6.5MeV


Yoshida et al. (2008)


Tveの推定

- 十字plot:数値実験で得られたTvの値の組み合わせ
- Tve < T $\overline{\text{ve}}$ < Tvx • Tvx = 4.3~6.5MeV (Yoshida et al.,2008)

\Rightarrow 3.9MeV < Tve < 6.0MeV

ニュートリノ振動

- ニュートリノが超新星内部を 通過するとき、ニュートリノ振動に よりフレーバーが変化する。
- case A 順質量階層および 逆質量階層(sin²2 0 13<<10⁻⁵):
- •case B 逆質量階層(sin²2 θ ⅓>>10⁻⁵):

※右肩の添字"0": ニュートリノ振動前の 粒子を示す。

$$\frac{dN_{\bar{\nu}_e}}{dE_{\bar{\nu}_e}} = |U_{e1}|^2 \frac{dN_{\bar{\nu}_1}}{dE_{\bar{\nu}_1}} + |U_{e2}|^2 \frac{dN_{\bar{\nu}_2}}{dE_{\bar{\nu}_2}} + |U_{e3}|^2 \frac{dN_{\bar{\nu}_3}}{dE_{\bar{\nu}_3}}
= |U_{e1}|^2 \frac{dN_{\bar{\nu}_e}^0}{dE_{\bar{\nu}_e}} + \left(1 - |U_{e1}|^2\right) \frac{dN_{\nu_x}^0}{dE_{\nu_x}},$$
(7)

$$\frac{dN_{\bar{\nu}_e}}{dE_{\bar{\nu}_e}} = |U_{e3}|^2 \frac{dN_{\bar{\nu}_e}^0}{dE_{\bar{\nu}_e}} + \left(1 - |U_{e3}|^2\right) \frac{dN_{\nu_x}^0}{dE_{\nu_x}} \simeq \frac{dN_{\nu_x}^0}{dE_{\nu_x}}.$$
 (9)

Dighe, Smirnov (2000)

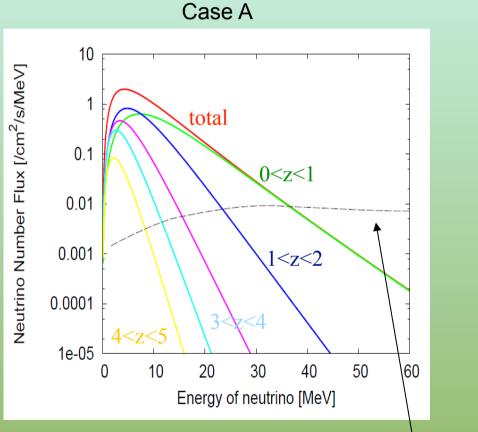
検出装置等

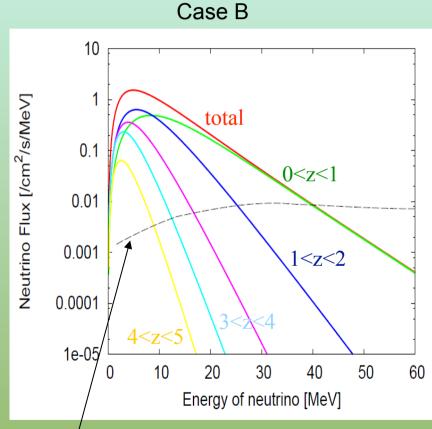
写真提供:

東京大学宇宙線研究所神岡宇宙素粒子研究施設

Mt級SRN検出装置を想定

- ・水チェレンコフ式、GdCl₃添加
- •有効容積: 1.0Mton
- •SRN検出エネルギー下限: 10.0MeV
- •反応:p + ve → e+ n
- 反応断面積: Strumia&Vissani(2003)による

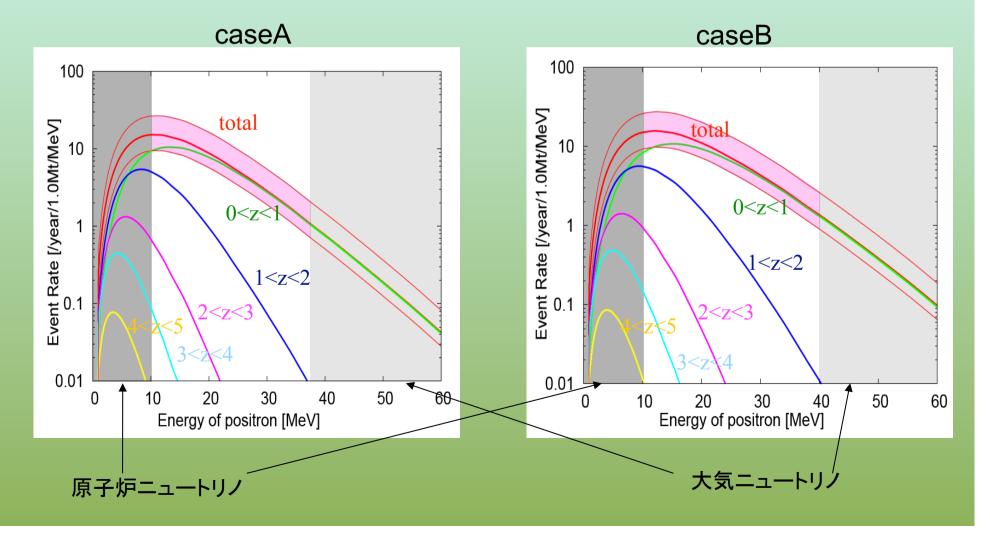

3 結果


1: 単位面積・時間・エネルギー幅当たりSRN入射数

大気ニュートリノ

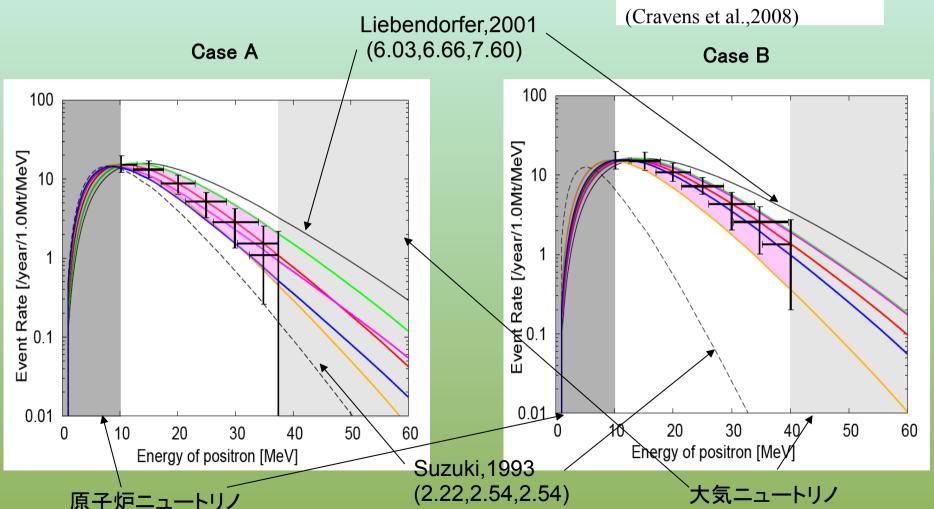
SN model:1987A(16.2M₀,1.0×10⁵³erg))

 $Tv\mu,\tau$: 6.0MeV, $T\overline{ve}$: 5.0MeV



2: SRN検出率の星形成率依存性

SN model:1987A(16.2M₀,1.0×10⁵³erg)


 $Tv\mu,\tau$: 6.0MeV, $T\overline{ve}$: 5.0MeV

※veのみの検出率

3: SRN検出率における ニュートリノ温度の影響

-:case1(-,6.0,6.5) -:case2(-,5.0,6.0) -:case3(-,4.0,6.5) -:case4(-,3.9,5.6) -:case5(-,4.5,4.7) (MeV) ※—:エネルギー解像度 (Cravens et al.,2008)

4 まとめ

- •超新星元素合成から推定したTvを用いて SRNエネルギースペクトルを計算
- •SRN エネルギースペクトル → 検出数
- ・ニュートリノ温度(T_v)の上限・下限を考慮することで、SRN検出率の不定性を減ずることができた。
- ・現段階では、ニュートリノ質量階層・混合角に制限 を加えることは困難。

Summary

- 超新星爆発におけるニュートリノの役割
- ニュートリノ元素合成
 - 軽元素 (Li, B)、重元素
 - Ib/c型の場合破砕反応との組み合わせ
- 爆発のエネルギー供給
 - ニュートリノ対消滅によるジェット生成
 - GRBの中心エンジン
- 観測可能性
 - SNR