大質量星の進化、元素合成

梅田秀之 (東京大学天文)

2009.3.16 沼津高専ワークショップ

研究紹介 (研究対象)

- 星の進化
 - 銀河進化や宇宙論への応用
 - 超新星(中性子星、ブラックホール)、GRBの親星
 - 元素合成 (ダスト形成)
- 元素合成
 - 元素の起源、銀河の化学進化、ダスト形成、隕石
 重力崩壊型超新星、GRB(大質量星)
 - 原子核物理、爆発機構、ニュートリノ、磁気流体
 - -la型超新星: 中小質量星、連星進化、爆発機構
- 中性子星 (原子核物理)

今日の話

1. 超新星による元素合成と観測による検証

2. PopIII 超巨大星(10分)>続、天文学会

3. 自転星の進化計算コードの開発(10分)

観測との比較

- Znまでの元素:
 - 超金属欠乏星の組成との比較
 (e.g., Umeda & Nomoto 2002, 2003, 2005
 Tominaga, Umeda, Nomoto 2007
 - 銀河の化学進化 (+la型超新星) Kobayashi, Umeda et al. 2006

どのような超新星であったか? ← 組成を観測 EMP 星(長寿命)

[Fe/H] < -3 stars

金属欠乏星(Metal-Poor Stars)の分類

(Beers & Christlieb 2005)

Mega Metal-Poor (MMP): **Hyper Metal-Poor (HMP):** Ultra Metal-Poor (UMP): **Extremely** Metal-Poor (EMP) : [Fe/H] < -3 Very Metal-Poor (VMP): Metal-Poor (MP) : Solar: Super Metal-Rich (SMR):

[Fe/H] < -6[Fe/H] < -5[Fe/H] < -4[Fe/H] < -2[Fe/H] < -1 $\overline{Fe}/H \sim 0$ [Fe/H] > +0.5

超金属欠乏星 [Fe/H] < -3 組成トレンドの説明 Fe/H of EMP stars ~ (M(Fe) / M(H)) ∝(M(Fe) / E)

Umeda & Nomoto 2005; Tominaga, Umeda, Nomoto 200^{20}

- Larger explosion energy
 - \Rightarrow Higher entropy (T³/ ρ)
 - \Rightarrow more α
 - ⇒ more ⁶⁴Ge
 - \Rightarrow more ⁶⁴Zn

Weak r-process?

Sr, Y, Zr がr-processでは説明できない星があ

Znまでの観測値は 再現できているが Sr,Y,Zrは観測値に 全く届いていない

2Dシミュレーション(Janka et al. 03)

今回の計算

元々のYe ほぼ0.5

Izutani, Umeda, Tominaga, ApJ 2009

Ye = 0.40-0.50(Ye:単位核子あたりの電子数)

mass-cutより内側のYe
 を0.40-0.50に設定して元素合成計算
 mass-cutより内側からの

質量放出(ͺΔΜ))を仮定	
-------	------	------	--

質量 M _☉	爆発エネルギー (×10 ⁵¹ erg)	モデル 名
13	1.5	1301
25	1	2501
25	20	2520

核反応ネットワーク

結果

結果

観測値と比較

この星の場合

Honda et al. 2007の Weak-r star

Mo,Ru,Rhの 観測値([X/Fe]~0)を 再現できてない

これらの元素がどの Weak-r star にもある のかどうかまだ不明

Mo, Ru, Rh ratioの観測値 HD122563 [Mo/Fe]= -0.02 [Ru/Fe]=0.07 [Rh/Fe]<0.45 HD88609 [Mo/Fe]=0.15 [Ru/Fe]=0.37 [Rh/Fe]<0.70 (Honda et al. 2007)

Mo,Ru,Rhを作れるか:higher E models

model-2520でSr,Y,Zrができた →さらに爆発エネルギーを大きくすれば Mo, Ru, Rhもできるかもしれない

model-2520 Ye=0.45

Ζ

model-2530 Ye=0.45

model-2540 Ye=0.45

model-2550 Ye=0.45

Hot bubble & Neutrino driven wind

Mo, Ru, Rhかもしれない

結果(low density models, mass-cutより内側)

model-2520 Ye=0.45 ρ =1/3 model-2520 Ye=0.45 ρ =1/7

model-2520 Ye=0.45 ρ =1/5

model-2520 Ye=0.45 $\rho = 1/1$

Entropy: s∝E^{3/4}/ρ ●entropy が大きいほうが重元素合成が進む

- •今回のモデル s/k_b entropy per baryon
 - •Supernova shock $s/k_b \sim 3$
 - •Hypernova shock $s/k_b \sim 15$
 - •Higher E models s/k_b ~ 30(足りない
 - •Low density models $s/k_b \sim 150$
 - •c. f. r-process $s/k_b \sim 400$
 - •Hot bubble s/k $_{\rm b}$ ~ 20 30 and Ye $\lesssim \! 0.52$ (2D simulation)
 - •Proton-rich outflow (e.g. Qian and Woosley 1996)

•s/k_b ~ < 80 and Ye $\leq 0.57 - \nu$ p process (Pruet et al 2006 Mo92できなかった?)

Low density models (total yield)

model-2520 Ye=0.45 ρ =1/7 Δ M=6.8E-04

まとめ

•S/k_b ~ 15-20 + low Ye ~0.45 (Hypernova Shock or SN hot bubble) •Sr,Y, Zr までできる

- •E_{exp}大→Mo, Ru, Rhできない
- •Higher entropy (Low Ye, ρ低)→Mo, Ru, Rhできる
- ν pプロセス: High entropy+High Ye
 (Mo できない?)

Mo, Ru, Rhの観測が必要である。 (Sr, Y, Zrのみ多く、Mo, Ru, Rhの少ない EMPstarは存在するのか?)

考察:weak r-process starの[Sr/Fe] vs[Zn/Fe]

- Znより重い元素も含めて統一的に観測と 比較する(観測点も増えつつある (with 吉田、岩本: weak-r, r-, p-, ν p-processes – Realistic な爆発モデルがより重要となる
 - Hot bubble, ニュートリノ駆動風モデル
 (Sumiyoshi, Yamada, Suzuki group との連携)
- 多次元効果
 - 多次元磁気流体シミュレーション
 - -親星の自転効果 (コードの開発 with 吉田、岩本)

N. Iwamoto et al. 2005, 2007

Y_e=0.58 --- Y_e in the Si burning region

Mass Number, A

ν pプロセスは重要なのか、そうでもないのか?

- Proton-rich matter の放出は重要
 - K,Sc などのOdd-Z元素の不足を埋める
 - 通常のHot bubble程度のentropyではZnより重い元素はあまりできない。
 - High entropy の場合は v p(high Ye), Low Yeと もに weak r-元素 (Sr,Y,Zr) を作れる。
 - が、isotope ratio が異なる: 将来の観測に期待

Mass Ratio	Sr88	Sr87	Sr86	Sr84	
Solar	1	0.08	0.09	0.006	
ν p(Ye=0.55)	1	15	76	960	- Preliminary
Low Ye(>0.45)	1	7e-4	2e-5	8e-5	

PopIII星とは何か? (with Ohkubo, Nomoto, 他)

- どの程度大質量?
- PopIII.1 と PopIII.2

標準宇宙モデル: 暗黒エネルギー、暗黒物質入り

Yoshida, Abel, Hernquist & Sugiyama (2003)

3次元宇宙論的星形成シミュレーション (Yoshida et al. 2006, 2007, 2008)

進化の軌跡(質量一定)

PISN v.s. 銀河ハロー金属欠乏星 (Umeda & Nomoto 02, 270M。)

PISNから得られる重元素比は銀河ハ ローの化学組成や、銀河団ガスの化学 組成と全く一致しない・・・<u>PISNはPop</u> IIIとして寄与していないはず Hypernova v.s. 銀河ハロ一金属欠乏星 (Umeda & Nomoto 2005; Tominaga, Umeda, Nomoto 2008

通常の大質量星の超新星爆発のモ デルでは、元素組成を説明可能

PISNを作らない2つの方法

- 重くする(M>300M_☉ 爆発せずブラックホールへ)
- • 軽くする(M<140M_☉ 重力崩壊型超新星)

<u>very-massive (over 100 or even 300M_o) ?</u>

質量降着による質量増加

進化計算

○初期質量1.5M_☉から質量降着をさせて進化を追う
 (<u>主系列前から進化の最終段階</u>—core collapse or PISN--まで)

●質量降着率は4つ

(1) *dM/dt* by cosmological simulation (<u>Pop III.1</u>, Yoshida et al. 2006)
 (2) *dM/dt* affected by feedback (McKee & Tan 2008)
 (3) *dM/dt* affected by Pop III.1 stars (<u>Pop III.2</u>, Yoshida et al. 2007)

(4) Constant *dM/dt* (1×10⁻⁵ --- 1×10⁻⁴ M_☉/yr Omukai & Palla 2003より1-2桁小さいモデル)

<u>Non accreting modelsの計算結果と比較</u>

PopIII.I と III.2

PopIII.1星からのUV放射の影響
 HD分子の生成とそれによる雲の冷却
 雪の分裂

Mass Accretion を伴う星の進化計算モデル (Accretion Rates *dM/dt*)

質量増加に伴って光度が大きく増加 進化につれて表面温度が低下

Results 1.5Msunから増やす

	<u>寿命(yr)</u>	<u>最終質量(M)</u>
1 . Accretion Rate by Y	oshida et al. (2006)	Pop III.1
1.	2.2×10^{6}	910(C-C)
1 .'(1/10のdM/dt)	2.9×10 ⁶	385(C-C)
<u>2</u> . Accretion Rate by	McKee et al. (2008)	Pop III with Feedback
2.	3.1×10 ⁶	135(C-C)±???
<u>3.</u> Accretion Rate by	y Yoshida et al. (2006	Pop III.2
3.	5.5×10 ⁶	40(C-C)

PopIII.I と III.2

M > 300M₀ どちらもPISNにならない(可能性)

星の自転と進化

- - 1. 重カポテンシャル: 球 ⇒ 回転楕円体
 - -2. 自転効果による物質混合 (元素合成、組成の変化)
 - -3. 質量放出率の増加
 - その他、磁場の生成や角運動量輸送
- ・超新星爆発には、

 ー中心核の自転速度

 ー中心部の磁場の強さ

星の進化計算(1次元球対称) Full set of equations

$$\begin{split} \frac{\partial r}{\partial m} &= \frac{1}{4\pi r^2 \varrho} \quad , \\ \frac{\partial P}{\partial m} &= -\frac{Gm}{4\pi r^4} - \frac{1}{4\pi r^2} \frac{\partial^2 r}{\partial t^2} \quad , (\text{Im} \& \ensuremath{\bar{q}} \Lambda \ensuremath{\bar{l}} \Lambda \ensuremath{\bar{l}} R \ensuremath{$$

- 通常Henyey法という方法で計算
 - 非線形の境界値問題
 - – 解の推測値と真の解との差 δy に対する線形化した方程式を作り、
 解く
 - これを繰り返し δ y が十分小さくなるまでiteration

星の進化計算(回転星も1次元的計算)

$$\begin{split} \frac{\partial r}{\partial m} &= \frac{1}{4\pi r^2 \varrho} \quad , \\ \frac{\partial P}{\partial m} &= -\frac{Gm}{4\pi r^4} - \frac{1}{4\pi r^2} \frac{\partial^2 r}{\partial t^2} + \bar{\mathbf{g}} \bar{\mathbf{0}} D \bar{\mathbf{\eta}} \\ \frac{\partial l}{\partial n \mathbf{k}} &= \varepsilon_{\mathbf{n}} - \varepsilon_{\nu} - c_{P} \frac{\partial T}{\partial t} + \frac{\delta}{\varrho} \frac{\partial P}{\partial t} \\ \frac{\partial T}{\partial m} &= -\frac{GmT}{4\pi r^4 P} \nabla \quad , \quad (\nabla = \nabla_{rad} = \frac{3 \kappa LP}{16 \pi a c T^{-4}}, \nabla = \nabla_{convec} \quad) \\ \frac{\partial X_i}{\partial t} &= \frac{m_i}{\varrho} \left(\sum_{j} r_{ji} - \sum_{k} r_{ik} \right) \end{split}$$

r --> a(r*, θ*) : 等"ポテンシャル"

いくつかの物理量を等ポテンシャル面での平均値と置き換える。 化学組成は等ポテンシャル面で 一様である、と仮定。

自転効果の重要性?

- 星の進化理論、今昔、
 - 星進化理論は終わっていると思っている人が多いが、、
 - 対流、質量放出率の不定性の問題は解決していない
- 対流オーバーシューティングの有無
 - OPALオパシティ(~1996)以前: 強めのオーバーシューティング
 - 以降: それほどいらない
 - 自転効果による物質混合 > オーバーシューティング的効果?
- 青い星と赤い星の数の比(B/L比)
 - オーバーシューティングによる解決案(再び、
 - 自転Mass Lossによる説明
- 星の進化理論の問題はほぼ全て自転効果で説明できる (と思っている人もいる)

大質量星:回転とB/R比

Maeder & Meynet, (2001) A&A 373, 555

- 青色超巨星と赤色超巨星の数の比 (B/R比) は低金属になると急減する (観測)
- 対流のモデルを変えるとB/R比は変わるが、金属量の依存性は説明できていない
- 回転星の核の進化はより重い星と似るため、He燃焼時にBlueでいる時間が減少する
- 金属が多いとMass Loss が多く角運
 動量を多く失う(低速回転)

$M_{ m ini}$	B/R	B/R	
	$v_{ m ini}=0$	$v_{ m ini} = 300$	
25	63	0.30	
20	47	0.43	
15	5.0	0.24	
12	20.6	85	
9	2.7	0.10	

Z=0.004 観測値 0.5~0.8 (SMC)

Fig. 9. Evolution of the T_{eff} as a function of the fraction of the lifetime spent in the He–burning phase for 20 M_{\odot} stars with different initial velocities.

もっともらしい説明ではあるが、 どの程度正しいのか、他の解 61 はないのか、まだ不明

大質量星のMass Loss

一般に恒星は表面から質量を放出している:表面のガスが星の放射圧によって加速、脱出速度を超えると星から放出される(太陽風)

• 質量放出率(半観測値) $\dot{M} \approx A(L,T_{eff})Z^{0.5} \frac{L}{T_{eff}}$

エータ・カリーナのMass Loss
 の形状は回転Mass Lossで
 説明できる(?
 (しかし最近エータ・カリーナは
 連星であることが明らかになった。_

Μ

~100M

回転星の進化計算に予言能力は本当にあるのか?

- かなり奇抜な予言がいくつかある
 - 超新星関係: 特に Yoonら
 - 1) 白色矮星の限界質量 1.4Msun → 2-4 Msun (Super チャンド ラセカール質量のIa型超新星
 - 2)GRB親星のモデル (高速回転した金属の少ない大質量星が Mass Lossせずに巨大なヘリウム星となったものがGRBに)
- 他には、
 - 磁場の効果を"適切に"取り入れるとほぼ全ての大質量星が Mass Lossとともに角運度量を多く失い低速回転コアができる。
 - エータ・カリーナのMass Loss 形状(本当は連星相互作用ではないのか?)
- ほぼ全ての現象が非回転モデル+連星相互作用で説 明できる可能性もある

しかし、今(この科研費の研究で)回転星コードを完成 させておくことは極めて重要

世界に取り残される

- アメリカードイツグループ: Heger, Langer, Yoon, Woosley
- ヨーロッパ(スイス、フランス、イギリス)グループ
 - Maeder, Meynet, Hirschi et al. (Si燃焼まで
- イタリア(スペイン)グループ: Limongi, Chieffi et al
 - Fe core まで、開発を始めたところ
- 連星で合体した場合にも回転星の進化が重要。
- 将来Full 2D, 3D 星の進化計算を行うための第一ス テップ

2D, 3Dの星の進化計算例 M. Mocak, E. Mueller, A. Weiss, K. Kifonidis arXiv:0811.4083

- 1D的近似: 将来Full 2D, 3D 星の進化計算を行うための 第一ステップ
- ヨーロッパでは幾つかの計画が進行中
- 我々も1D的計算がうまくいったら次は2D,3Dをめざしたい。

第二世代星(metal-free)の形成

第一世代星(まわりの領域に比べ早くに星 形成がはじまる)・・・Very Massive

第一世代星からのUV放射

HⅡ領域の形成

HD分子ができる

HD coolingが効率的にはたらく

ガスの温度が冷える

重力不安定なガス雲の質量(M_J)が小さい 比較的低質量な星ができる(M~40M_☉)

第一世代星···まわりより星形成がはやい **Pop III.1 星** 第二世代星···まわりより星形成がおそい(Pop III.1に影響される) Pop III.2 星

Feedbackがあると

McKee et al. 2008 (速い回転でaccretion diskを形成)

